The properties of liquid-liquid interfaces are intricately linked to its structure, with a particular focus on the concentration distribution within the interface. To obtain precise information regarding the concentration distribution, we have developed a high-resolution soft X-ray imaging method for liquid-liquid interfaces. This work focused on representative partially miscible systems, analyzing the interfacial concentration distribution profiles of water-alkanols under both steady-state and dynamic processes, and obtaining the diffusion coefficients of different water concentrations in alkanols.
View Article and Find Full Text PDFThe absorption grating is a critical component of neutron phase contrast imaging technology, and its quality directly influences the sensitivity of the imaging system. Gadolinium (Gd) is a preferred neutron absorption material due to its high absorption coefficient, but its use in micro-nanofabrication poses significant challenges. In this study, we employed the particle filling method to fabricate neutron absorption gratings, and a pressurized filling method was introduced to enhance the filling rate.
View Article and Find Full Text PDF