Publications by authors named "Kuanliang Shao"

Article Synopsis
  • Micro- and nanoplastics (MNPs) are prevalent global pollutants with unknown health impacts, particularly concerning their ability to cross the placental barrier and affect reproductive health.
  • The AURORA project aims to investigate the biological and health effects of MNP exposure during pregnancy and early life, focusing on enhancing measurement techniques for MNPs and related chemicals in human tissues.
  • The project involves interdisciplinary methods, including observational studies of 800 mother-child pairs and toxicological assessments, to establish a framework for understanding the impact of MNPs on health and identify critical knowledge gaps.
View Article and Find Full Text PDF

Although plastic pollution and exposure to plastic-related compounds have received worldwide attention, health risks associated with micro- and nanoplastics (MNPs) are largely unknown. Emerging evidence suggests MNPs are present in human biofluids and tissue, including blood, breast milk, stool, lung tissue, and placenta; however, exposure assessment is limited and the extent of human exposure to MNPs is not well known. While there is a critical need to establish robust and scalable biomonitoring strategies to assess human exposure to MNPs and plastic-related chemicals, over 10,000 chemicals have been linked to plastic manufacturing with no existing standardized approaches to account for even a fraction of these exposures.

View Article and Find Full Text PDF

The thermal decomposition mechanism of hydroxyacetone from 850 to 1390 K was examined by using flash pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry combined with density functional theory calculation. The results showed that keto-enol tautomerisms could occur prior to the thermal decomposition of hydroxyacetone. The decomposition pathways of hydroxyacetone and its isomer, 2-hydroxypropanal were characterized.

View Article and Find Full Text PDF

Thermal decomposition of tetraethylsilane was investigated at temperatures up to 1330 K using flash pyrolysis vacuum ultraviolet photoionization mass spectrometry. Density functional theory and transition state theory calculations were performed to corroborate the experimental observations. Both experimental and theoretical evidence showed that the pyrolysis of tetraethylsilane was initiated by Si-C bond fission to the primary reaction products, triethylsilyl (SiEt) and ethyl radicals.

View Article and Find Full Text PDF

Thermal decomposition of cycloheptane was studied using flash pyrolysis coupled with vacuum ultraviolet (118.2 nm) single photon ionization time-of-flight mass spectrometry at temperatures ranging from 295 K to 1380 K. C-C bond breaking of cycloheptane leading to the 1,7-heptyl diradical was considered as the initiation step.

View Article and Find Full Text PDF

Thermal decomposition of 1,1,2,2-tetramethyldisilane was performed by flash pyrolysis in a SiC microreactor in the temperature range from 295 to 1340 K, followed by molecular beam sampling and vacuum ultraviolet photoionization mass spectrometry analysis. Density functional theory investigations on the energetics of reactants, intermediates, and products were carried out to support the experimental observations. Energetics for 1,1,2,2-tetramethyldisilane initiation decomposition reactions and important secondary reactions were calculated.

View Article and Find Full Text PDF

To develop chemical kinetics models for the combustion of ionic liquid-based monopropellants, identification of the elementary steps in the thermal and catalytic decomposition of components such as 2-hydroxyethylhydrazinium nitrate (HEHN) is needed but is currently not well understood. The first decomposition step in protic ionic liquids such as HEHN is typically the proton transfer from the cation to the anion, resulting in the formation of 2-hydroxyethylhydrazine (HEH) and HNO. In the first part of this investigation, the high-temperature thermal decomposition of HEH is probed with flash pyrolysis (<1400 K) and vacuum ultraviolet (10.

View Article and Find Full Text PDF

The ultraviolet (UV) photodissociation dynamics of the jet-cooled cyclohexyl (-CH) radical is studied using the high- Rydberg atom time-of-flight (HRTOF) technique. The cyclohexyl radical is produced by the 193 nm photodissociation of chlorocyclohexane and bromocyclohexane and is examined in the photolysis wavelength region of 232-262 nm. The H-atom photofragment yield (PFY) spectrum contains a broad peak centered at 250 nm, which is in good agreement with the UV absorption spectrum of the cyclohexyl radical and assigned to the 3p Rydberg states.

View Article and Find Full Text PDF

Thermal decomposition of cyclohexane at temperatures up to 1310 K was performed using flash pyrolysis coupled with vacuum ultraviolet (118.2 nm) photoionization time-of-flight mass spectrometry. The experimental results revealed that the major initiation reaction of cyclohexane decomposition was C-C bond fission leading to the formation of 1,6-hexyl diradical.

View Article and Find Full Text PDF