Publications by authors named "Kuangpei Wu"

The transcription factor FOXM1 binds to its consensus sequence at promoters through its DNA binding domain (DBD) and activates proliferation-associated genes. The aberrant overexpression of FOXM1 correlates with tumorigenesis and progression of many cancers. Inhibiting FOXM1 transcriptional activities is proposed as a potential therapeutic strategy for cancer treatment.

View Article and Find Full Text PDF

WD-repeat protein 79 (WDR79), a member of the WD-repeat protein family, acts as a scaffold protein, participating in telomerase assembly, Cajal body formation and DNA double-strand break repair. Here, we first report that WDR79 is frequently overexpressed in cell lines and tissues derived from non-small cell lung cancer (NSCLC). Knockdown of WDR79 significantly inhibited the proliferation of NSCLC cells in vitro and in vivo by inducing cell cycle arrest and apoptosis.

View Article and Find Full Text PDF

The ubiquitin-specific protease USP7 stabilizes both Mdm2 and p53 by removing ubiquitins, hence playing an important enzymatic role in the p53-Mdm2 pathway. However, it is poorly understood how USP7 executes its dual-stabilization effect on Mdm2 and p53 in cellular context. Here, we report that STIP is a novel macromolecular scaffold that links USP7 to the p53-Mdm2 pathway.

View Article and Find Full Text PDF

Sip1/tuftelin-interacting protein (STIP), a multidomain nuclear protein, is a novel factor associated with the spliceosome, yet its role and molecular function in cancer remain unknown. In this study, we show, for the first time, that STIP is overexpressed in non-small cell lung cancer (NSCLC) tissues compared to adjacent normal lung tissues. The depletion of endogenous STIP inhibited NSCLC cell proliferation in vitro and in vivo, caused cell cycle arrest and induced apoptosis.

View Article and Find Full Text PDF

Nicotinic acid (niacin) has been widely used as a favorable lipid-lowering drug for several decades, and the orphan G protein-coupled receptor GPR109A has been identified to be a receptor for niacin. Mechanistic investigations have shown that as a G(i)-coupled receptor, GPR109A inhibits adenylate cyclase activity upon niacin activation, thereby inhibiting free fatty acid liberation. However, the underlying molecular mechanisms that regulate signaling and internalization of GPR109A remain largely unknown.

View Article and Find Full Text PDF