The combined cadmium (Cd) and acid rain pollution poses a significant threat to the global ecological environment. Previous studies on the combined adverse effects have predominantly focused on the aboveground plant physiological responses, with limited reports on the microbial response in the rhizosphere soil. This study employed Populus beijingensis seedlings and potting experiments to simulate the impacts of combined mild acid rain (pH=4.
View Article and Find Full Text PDFThe phenomenon of cross adaptation refers to the ability of plants to improve their resistance to other stress after experiencing one type of stress. However, there are limited reports on how ultraviolet radiation B (UVB) pretreatment affects the enrichment, transport, and tolerance of cadmium (Cd) in plants. Since an appropriate UVB pretreatment has been reported to change plant tolerance to stress, we hypothesized that this application could alter plant uptake and tolerance to heavy metals.
View Article and Find Full Text PDFThe natural regeneration of seedlings is a key factor for forest succession. Nevertheless, studies explaining the mechanism of growth and biomass allocation in regenerated seedlings after disturbance are lacking. Therefore, we measured the growth, biomass accumulation, and biomass allocation in current-age seedlings of after selective logging (logging of competitive trees, ; logging of inferior trees, ; and unlogged control, ), and established structural equation models (SEMs) among the spatial structure characteristic indexes of the stand, environmental factors, and biomass allocation in different organs.
View Article and Find Full Text PDFFine root anatomy plays an important role in understanding the relationship between fine root function and soil environment. However, in different soil environments, the variation of fine root anatomical structure in different root sequences is not well studied. We measured the soil conditions and anatomical structure characteristics (root diameter, cortical tissue, vascular tissue and xylem) of fine roots of in four experimental sites, and analyzed each level of fine roots separately.
View Article and Find Full Text PDFWeeping cypress is an endemic tree species that is widely planted in China, and the simple stand structure and fragile ecosystem of its plantation are common issues. Exploring the effect of different gap sizes on the soil bacterial community structure of weeping cypress plantations can provide a theoretical basis for the near-natural management of forest plantations. We, therefore, constructed three kinds of forest gaps with different sizes in weeping cypress plantations, namely, small (50-100 m), medium (100-200 m), and large gaps (400-667 m), for identifying the key factors that affect soil bacterial communities following the construction of forest gaps.
View Article and Find Full Text PDFThe decline in forest ecological function caused by pure forest plantations planted in the Yangtze River basin is becoming increasingly serious. To investigate this problem, we selected the local low-efficiency weeping cypress plantations for forest gap transformation. Three forest gap sizes, specifically large, medium, and small gaps, were established, and the effects of gap sizes on soil bacterial community structure and diversity in winter and summer were studied compared to no gaps (CK; control).
View Article and Find Full Text PDFThe root system architecture (RSA), being a key characteristic of the root economic spectrum, describes the spatial arrangement and positioning of roots that determines the plant's exploration of water and nutrients in the soil. Still, it remains poorly understood how the RSA of woody plants responds to the demand for water and nutrients in different soil environments and how the uptake of these resources is optimized. Here we selected single-species plantations of and determined their topological index (), revised topological index ( and ), root link length (), root branching rate ( and : ), and soil physicochemical properties to assess which root foraging strategies adopt in different soil environments among Guang'an City (GA), Suining City (SN), Mianyang City (MY), and Deyang City (DY) in China.
View Article and Find Full Text PDFAs one means of close-to-nature management, forest gaps have an important impact on the ecological service function of plantations. To improve the current situation of plantations, three different sizes of forest gaps (large gaps, medium gaps and small gaps) were established to observe whether gap setting can improve the soil fertility and plant diversity of forest plantations. The results showed that compared with the control, the soil organic matter content of different soil layers increased significantly in the medium forest gap and large forest gap.
View Article and Find Full Text PDFPhytoremediation technology can help achieve moderate cost and considerable effect with respect to the remediation of heavy metal (HM) pollution in soil and water. Many previous studies have suggested the role of nitrogen (N) in the alleviation of effects of HM on plants. Herein, we sought to determine the molecular mechanisms by which additional N supplementation mitigates cadmium (Cd) toxicity in poplars using a combination of physiological, transcriptomic and phosphoproteomic analyses.
View Article and Find Full Text PDFUnderstanding the influence of gaps in promoting canopy recruitment will help to maintain structural stability and achieve continuous forest cover. We established three control plots and experimental plots with three replications each (gap sizes L-I, L-II, L-III, and L-IV) in a Chinese pine (Pinus tabulaeformis Carr.) plantation to test the short-term effects of gap size on the age distribution, density and growth, and annual height and ground diameter growth for regeneration established before (REBG) and after (REAG) gap creation.
View Article and Find Full Text PDF