Background: A new strategy, particularly a novel combination, for immunotherapy in microsatellite stable metastatic colorectal cancer (mCRC) treatment needs to be formulated. Studies on the interferon-γ (IFN-γ)/ Janus kinase (JAK)/ signal transducer and activator of transcription (STAT)1 pathway provide new directions in this regard.
Methods: Our study applies three colon cancer cell lines, including microsatellite stable (MSS) cell lines, which are SW480 and SW620, and microsatellite instability-high (MSI-H) cell line, which is DLD-1.
Single immunotherapy fails to demonstrate efficacy in patients with microsatellite stable (MSS) metastatic colorectal cancer (mCRC). Research on immune reactions before and after systemic agents for mCRC is warranted. Our study examined cell line models to compare the expression of immune surface markers on colon cancer cells before and after chemotherapy agents.
View Article and Find Full Text PDFBackground: Dendritic cells (DCs) that are derived from hematopoietic stem cells (HSCs) are the most potent antigen-presenting cells and play a pivotal role in initiating the immune response. Hence, large-scale production and direct induction of functional DCs ex vivo from HSCs are crucial to HSC research and clinical potential, such as vaccines for cancer and immune therapy.
Methods: In a previous study, we developed a serum-free HSC expansion system (SF-HSC medium) to expand large numbers of primitive HSCs ex vivo.
Mesenchymal stem cells (MSCs) are multi-potent with numerous mesenchymal-lineage differentiation potential and immunomodulatory capabilities. However, the immunoregulatory properties of MSCs are not clearly defined. The objective of the present study was to elucidate the role(s) of MSCs in IL-17 production and the subsequent effect(s) on neutrophil activation.
View Article and Find Full Text PDF