Publications by authors named "Kuan-Yeow Show"

Eco-friendly treatment of complex textile and dyeing wastewaters poses a pressing environmental concern. An approach adopting different treatment paths and integrated anaerobic-aerobic processes for high-strength and recalcitrant textile dyeing wastewater was examined. The study demonstrated that over 97% of suspended solids (SS) and more than 70% of chemical oxygen demand (COD) were removed by polyaluminum chloride pre-coagulation of suede fabric dyeing stream.

View Article and Find Full Text PDF

This paper outlines an integrated anaerobic-anoxic-oxic (A2O) treatment scheme for high-strength, highly recalcitrant wastewater from the production of polyphenylene sulfide (PPS) resins and their composite chemicals. An integrated anaerobic granular sludge blanket (GSB) and anoxic-oxic (AO) reactor indicated that the A2O removed chemical oxygen demand (COD) of up to 7,043 mg/L with no adverse impact from high total dissolved solids (25,000 mg/L) on the GSB COD removal and effluent suspended solids. At a Total Kjeldahl Nitrogen (TKN) nitrification load of 0.

View Article and Find Full Text PDF

The anaerobic granulation technology has been successfully applied full-scale for treating high-strength recalcitrant acrylic acid wastewater. This mini-review highlighted the recalcitrance of acrylic acid and its biological degradation pathways. And then, the full-scale practices using anaerobic granulation technology for acrylic wastewater treatment were outlined.

View Article and Find Full Text PDF

Anaerobic treatment is applied as an alternative to traditional aerobic treatment for recalcitrant compound degradation. This review highlighted the recalcitrant compounds in wastewaters and their pathways under aerobic and anaerobic conditions. Forty-one recalcitrant compounds commonly found in wastewater along with associated anaerobic removal performance were summarized from current research.

View Article and Find Full Text PDF

Microbial fermentation of organic matter under anaerobic conditions is currently the prominent pathway for biohydrogen production. Organic matter present in waste residues is regarded as an economic feedstock for biohydrogen production by dark and photo fermentative bacteria. Agricultural residues, fruit wastes, vegetable wastes, industrial wastewaters, and other livestock residues are some of the organic wastes most commonly used for biohydrogen production due to their higher organic content and biodegradability.

View Article and Find Full Text PDF

Safe disposal of effluent from palm oil production poses an environmental concern. The highly polluting effluent is customarily treated by unsustainable open ponds with low efficiency, direct emissions, and massive land use. This study looks into an application of integrated anaerobic/oxic/oxic scheme for treatment of high strength palm oil mill effluent.

View Article and Find Full Text PDF

Sustainable treatment of highly polluting industrial wastewaters poses a challenge to many municipalities. This study presented treatment of a high strength inhibitory acrylic acid wastewater by integrated anaerobic-aerobic processes. A novel scheme integrating anaerobic granular sludge blanket (GSB) reactor, aerobic carrier biofilm (CBR) reactor and activated sludge reactor (ASR) was tested.

View Article and Find Full Text PDF

High strength inhibitory wastewaters from chemical industries are commonly treated by energy-intensive physicochemical methods. The present work examines the startup and performance of a full-scale anaerobic granular sludge blanket (GSB) plant for treatment of an inhibitory acrylic acid wastewater. From a performance test on chemical oxygen demand (COD) loading up to 9800 mg/L and 3074 kg/d, the GSB plant removed 95% of COD.

View Article and Find Full Text PDF

Sustainable treatment of wastewaters generated from paint production is increasingly posing an environmental concern. Recalcitrant paint wastewaters are mostly treated by energy and cost intensive physicochemical methods like incineration, distillation or advanced oxidation. This paper reported for the first time a case study applying biological treatment processes to properly handle a high-strength recalcitrant paint wastewater with 5-day biochemical oxygen demand (BOD)/chemical oxygen demand (COD) less than 0.

View Article and Find Full Text PDF

Successful installations and operation of many granulation-base treatment plants all over the world in the recent years are reported. A better knowledge towards reactor operation and system performance has led to a growing interest in the technology. While the technology is well accepted and abundant research work has been carried out, insight unfolding the granulation fundamentals and its engineering applications remains unclear.

View Article and Find Full Text PDF

Biohydrogen from microalgae has attracted extensive attention owing to its promising features of abundance, renewable and self sustainability. Unlike other well-established biofuels like biodiesel and bioethanol, biohydrogen from microalgae is still in the preliminary stage of development. Criticisms in microalgal biohydrogen centered on its practicality and sustainability.

View Article and Find Full Text PDF

Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability.

View Article and Find Full Text PDF

Production of intracellular metabolites or biofuels from algae involves various processing steps, and extensive work on laboratory- and pilot-scale algae cultivation, harvesting and processing has been reported. As algal drying and cell disruption are integral processes of the unit operations, this review examines recent advances in algal drying and disruption for nutrition or biofuel production. Challenges and prospects of the processing are also outlined.

View Article and Find Full Text PDF

Studies on how different functional strains interact in a microflora may include isolation of pure strains using conventional plating technique and then mix a few of the isolates before observing their growth in specific medium. As isolating pure strains that take part in the key function of industrial effluent purification via conventional method is impractical, convenient alternative approaches to screen essential microbial group that maintains desired function of a mixed population is desired. Such approaches can be employed to allow the selection and enrichment of so-called functional consortium with user-defined attributes for specific functions.

View Article and Find Full Text PDF

Biological removal of carbon, nitrogen and sulfur is drawing increasing research interest in search for an efficient and cost-effective wastewater treatment. While extensive work on separate removal of nitrogen and sulfur is well documented, investigation on simultaneous denitrifying sulfide removal has only been reported recently. Most of the work on denitrifying sulfide removal has been focusing on bioreactor performance, loading and operating conditions.

View Article and Find Full Text PDF

Biofuels are viewed as promising alternatives to conventional fossil fuels because they have the potential to eliminate major environmental problems created by fossil fuels. Among the still developing biofuel technologies, biodiesel production from algae offers a greater prospect for large-scale practical use, as algae are capable of producing much more yield than other biofuels. While research on algae-based biofuel is still in its developing stage, extensive work on laboratory- and pilot-scale algae harvesting systems with promising prospects has been reported.

View Article and Find Full Text PDF

Aerobic granulation was developed in overcoming the problem of biomass washout often encountered in activated sludge processes. The novel approach to developing fluffy biosolids into dense and compact granules offers a new dimension for wastewater treatment. Compared with conventional biological flocs, aerobic granules are characterized by well-defined shape and compact buildup, superior biomass retention, enhanced microbial functions, and resilient to toxicity and shock loading.

View Article and Find Full Text PDF

Biohydrogen is regarded as an attractive future clean energy carrier due to its high energy content and environmental-friendly conversion. It has the potential for renewable biofuel to replace current hydrogen production which rely heavily on fossil fuels. While biohydrogen production is still in the early stage of development, there have been a variety of laboratory- and pilot-scale systems developed with promising potential.

View Article and Find Full Text PDF

Biohydrogen is regarded as an attractive future clean energy carrier due to its high energy content and environmental-friendly conversion. While biohydrogen production is still in the early stage of development, there have been a variety of laboratory- and pilot-scale systems developed with promising potential. This work presents a review of literature reports on the pure hydrogen-producers under anaerobic environment.

View Article and Find Full Text PDF

Aerobic granulation is drawing increasing global interest in a quest for an efficient and innovative technology in wastewater treatment. Developed less than two decades ago, extensive research work on aerobic granulation has been reported. The instability of the granule, which is one of the main problems that hinder practical application of aerobic granulation technology, is still to be resolved.

View Article and Find Full Text PDF

Aerobic granulation, a novel environmental biotechnological process, was increasingly drawing interest of researchers engaging in work in the area of biological wastewater treatment. Developed about one decade ago, it was exciting research work that explored beyond the limits of aerobic wastewater treatment such as treatment of high strength organic wastewaters, bioremediation of toxic aromatic pollutants including phenol, toluene, pyridine and textile dyes, removal of nitrogen, phosphate, sulphate and nuclear waste and adsorption of heavy metals. Despite this intensive research the mechanisms responsible for aerobic granulation and the strategy to expedite the formation of granular sludge, and effects of different operational and environmental factors have not yet been clearly described.

View Article and Find Full Text PDF

The physicochemical and microbiological characteristics of rapidly formed hydrogen-producing granules and biofilms were evaluated in the present study. Microbial species composition was examined using the 16S rDNA-based separation and sequencing techniques, and spatial distribution and internal structure of microbial components were evaluated by examining the confocal laser scanning microscope (CLSM) images. Phylogenetic analysis indicated that a pure culture of Clostridium pasteurianum-like bacterium (98% similarity) was found in microbial community of granules and biofilms.

View Article and Find Full Text PDF

This study presents an examination on the correlation of sonication operating condition, sludge property, formation and behaviour of cavitation bubbles in sludge disruption under low-frequency ultrasound sonication. The influence of sonication time, sonication density, type of sludge and solids content on the disruption was evaluated. The most vigorous particle disruption was achieved in the initial period of sonication, which subsided subsequently.

View Article and Find Full Text PDF

The influence of ultrasonication on hydrolysis, acidogenesis, and methanogenesis in anaerobic decomposition of sludge was investigated. The sonicated sludge exhibited prehydrolysis and preacidogenesis effects in the anaerobic decomposition process. First-order hydrolysis rates increased from 0.

View Article and Find Full Text PDF

Multiple fluorochrome experiments with as many fluorochromes as possible are desired for exploring the detailed structure of bioaggregates. Spectral peak interference and other practical limitations, however, restrict the maximum number of stains used simultaneously to three. This current study proposes a sixfold labelled scheme to stain the total cells, dead cells, proteins, lipids, and alpha- and beta-polysaccharides in bioaggregates.

View Article and Find Full Text PDF