Publications by authors named "Kuan-Chang Chang"

Sodium carboxymethyl cellulose (CMC-Na), derived from natural cellulose and frequently employed as a biocompatible coating, thus renders it an ideal component for the construction of highly biocompatible neuromorphic devices aimed at biomachine interfaces. Here, an array of Mo/CMC-Na/ITO neuromorphic devices is fabricated, with CMC-Na serving as the functional layer. The devices exhibit capabilities to emulate various synaptic learning rules and demonstrate high endurance performance among biomaterial-based electronics, achieving stability over 2 × 10 pulses.

View Article and Find Full Text PDF

Neuromorphic bioelectronics aim to integrate electronics with biological systems yet encounter challenges in biocompatibility, operating voltages, power consumption, and stability. This study presents biocompatible neuromorphic devices fabricated from acellular dermal matrix (ADM) derived from porcine dermis using low-temperature supercritical CO extraction. The ADM preserves the natural scaffold structure of collagen and minimizes immunogenicity by eliminating cells, fats, and noncollagenous impurities, ensuring excellent biocompatibility.

View Article and Find Full Text PDF

The burgeoning implantable biodevices have unlocked new frontiers in healthcare, promising personalized monitoring strategies tailored to specific needs. Herein, hyaluronic acid (HA) is harnessed to create fully biocompatible, acidity-sensitivity and cleft-adjustable neuromorphic devices. These HA-biodevices exhibit remarkable sensitivity to pH variations, effectively mimicking biological acid-sensing ion channels (ASICs) through protonation reactions between electronegative atoms and hydrogen ions, even at ultralow driving voltage (5 mV).

View Article and Find Full Text PDF

AlGaN/GaN high electron mobility transistors (HEMTs) play an important role in the field of high-voltage and high-frequency power devices. However, the current collapse effect of the HEMTs under high voltage greatly limits the development of AlGaN/GaN HEMTs. In this work, a breakdown performance enhanced drain surrounded double gate (DSDG) AlGaN/GaN HEMT is investigated.

View Article and Find Full Text PDF
Article Synopsis
  • Optoelectronic devices aim to mimic the human visual system, but they currently fail to retain optical image information after external stimuli are removed, hindering their ability to combine perception and memory.
  • This study introduces a multi-level UV optoelectronic memory device made from gallium nitride (GaN), designed to sense and store ultraviolet images, which contain invisible information to the human eye.
  • The device features embedded SiO side-gates that enhance the lifetime of photogenerated carriers, allowing for effective dual-mode storage, excellent retention over 7 days, and versatile control of storage states and erasure times.
View Article and Find Full Text PDF

Wearable and implantable devices have gained significant popularity, playing a crucial role in smart healthcare and human-machine interfaces, which necessitates the development of more complex electronic devices and circuits on biocompatible flexible materials. Polylactic acid (PLA) stands out due to its biodegradability, cost-effectiveness, and low immunogenicity. In this study, we utilize a solution-based spin-coating method to produce high-quality PLA thin films, serving as substrates for the fabrication of thin-film transistors (TFTs) in which the dielectric layer material is silicon dioxide, the channel layer material is IGZO, and the gate, drain, and source material is ITO at low temperatures (<40 °C) through a shadow masking technique.

View Article and Find Full Text PDF

Flexible static random access memory (SRAM) plays an important role in flexible electronics and systems. However, achieving SRAM with a small footprint, high flexibility, and high thermal stability has always been a big challenge. In this work, an ultraflexible six-transistor SRAM with high integration density is realized based on a monolithic three-dimensional (M3D) design.

View Article and Find Full Text PDF

The third-generation semiconductor gallium nitride (GaN) has drawn wide attention due to its high electron mobility property. However, the classical mobility calculation methods such as Hall effect and transfer length method have limitations in accurately extracting the mobility of GaN High Electron Mobility Transistor (HEMT) due to their inability to consider the resistance in non-gate region or their high fabrication costs. This work proposes an effective yet accurate computational-fitting method for extracting the mobility of GaN HEMT.

View Article and Find Full Text PDF

A great gap still exists between artificial synapses and their biological counterparts in operation voltage or stimulation duration. Here, an artificial synaptic device based on a thin-film transistor with an operating voltage (-50-50 mV) analogous to biological action potential is developed by targeted chemical processing with the help of supercritical fluids. Chemical molecules [hexamethyldisilazane (HMDS)] are elaborately chosen and brought into the target interface to form charge receptors through supercritical processing.

View Article and Find Full Text PDF

Neuromorphic vision sensors are designed to mimic the human visual system, which allows image recognition with low power computational requirements. Photonic synaptic devices are one of the most viable building blocks for constructing neuromorphic vision sensors. Herein, a photonic synaptic sensor based on an inorganic perovskite quantum dot (QD) embedded InGaZnO (IGZO) thin-film phototransistor is demonstrated.

View Article and Find Full Text PDF

As a key component responsible for information processing in the brain, the development of a bionic synapse possessing digital and analog bifunctionality is vital for the hardware implementation of a neuro-system. Here, inspired by the key role of sodium and potassium in synaptic transmission, the alkali metal element lithium (Li) belonging to the same family is adopted in designing a bifunctional artificial synapse. The incorporation of Li endows the electronic devices with versatile synaptic functions.

View Article and Find Full Text PDF

Complementary resistive switching (CRS) is a core requirement in memristor crossbar array construction for neuromorphic computing in view of its capability to avoid the sneak path current. However, previous approaches for implementing CRS are generally based on a complex device structure design and fabrication process or a meticulous current-limiting measurement procedure. In this study, a supercritical fluid-assisted ammoniation (SFA) process is reported to achieve CRS in a single device by endowing the original ordinary switching materials with dual-ion operation.

View Article and Find Full Text PDF

Thin-film transistors (TFTs) have drawn widespread applications in the increasingly sophisticated display field. Despite the mature process of fabricating enhancement-mode TFTs, lack of facile methods to realize depletion-mode TFTs restrains the implementation of complementary-type circuits, which in turn leads to relatively high power. Here, the supercritical fluid technique is introduced to elaborately design and tune the interface, providing the opportunity for function-mode transformation of TFTs.

View Article and Find Full Text PDF

We introduce supercritical fluid (SCF) technology to epsilon-near-zero (ENZ) photonics for the first time and experimentally demonstrate the manipulation of the ENZ wavelength for the enhancement of linear and nonlinear optical absorption in ENZ indium tin oxide (ITO) nanolayer. Inspired by the SCF's applications in repairing defects, reconnecting bonds, introducing dopants, and boosting the performance of microelectronic devices, here, this technique is used to exploit the influence of the electronic properties on optical characteristics. By reducing oxygen vacancies and electron scattering in the SCF oxidation process, the ENZ wavelength is shifted by 23.

View Article and Find Full Text PDF

Thin-film transistors (TFTs) have been widely used in the increasingly advanced field of displays. However, it remains a challenge for TFTs to overcome the poor subthreshold swing in the fast switching and high-speed applications. Here, we provide a solution to the above-mentioned challenge via supercritical dehydroxylation, which combines a low temperature, environmentally friendly supercritical fluid technology with a CaCl treatment.

View Article and Find Full Text PDF

For high-performance and high-lifetime flexible and wearable electronic applications, a low-temperature posttreatment method is highly expected to enhance the device performance and repair the defects induced by the low-temperature fabrication process intrinsically. Particularly, if the method can repair the traces induced by the multiple cycles of bending or deforming, it would overcome current fatal obstacles and provide a vital solution to the rapid development of flexible electronics. In this work, we propose a method to apply low-temperature supercritical CO fluid with a dehydration function to improve or even restore the performance of flexible amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs).

View Article and Find Full Text PDF

Memristor, processing data storage and logic operation all-in-one, is an advanced configuration for next generation computer. In this work, a bismuth doped tin oxide (Bi:SnO ) memristor with ITO/Bi:SnO /TiN structure has been fabricated. Observing from transmission electron microscope (TEM) for the Bi:SnO device, it is found that the bismuth atoms surround the surface of SnO crystals to form the coaxial Bi conductive filament.

View Article and Find Full Text PDF

Considerable efforts have been made to obtain better control of the switching behavior of resistive random access memory (RRAM) devices, such as using modified or multilayer switching materials. Although considerable progress has been made, the reliability and stability of the devices greatly deteriorate due to dispersed electric field caused by low permittivity surrounding materials. By introducing surrounding materials with a relatively higher dielectric constant, the RRAM devices become promising for cost-effective applications by achieving multilevel storage functionality and improved scalability.

View Article and Find Full Text PDF

Organic field-effect transistors (OFETs) are of the core units in organic electronic circuits, and the performance of OFETs replies critically on the properties of their dielectric layers. Owing to the intrinsic flexibility and natural compatibility with other organic components, organic polymers, such as poly(vinyl alcohol) (PVA), have emerged as highly interesting dielectric materials for OFETs. However, unsatisfactory issues, such as hysteresis, high subthreshold swing, and low effective carrier mobility, still considerably limit the practical applications of the polymer-dielectric OFETs for high-speed, low-voltage flexible organic circuits.

View Article and Find Full Text PDF

This study investigates the physical and chemical mechanisms during the resistive switching process by means of obtaining the activation energy in the reaction procedure. From the electrochemical and electrical measurement analysis results of HfO2-based resistive random access memory (RRAM), it can be observed that the chemical reaction during the reset process is consistent with the first-order reaction law. The activation energy, Ea, is determined from the reaction rate constant k under a varying-temperature environment in the reset process.

View Article and Find Full Text PDF

Emerging resistive random access memory has attracted extensive research enthusiasm. In this study, an indirect way to improve resistive random access memory (RRAM) comprehensive performance through electrode material re-design without intensive switching layer engineering is presented by adopting a hafnium-indium-tin-oxide composite. Working parameters of the device can be effectively improved: not only are low operation power consumption and high working stability achieved, but the memory window is significantly enlarged, accompanied by an automatic self-current-compliance function.

View Article and Find Full Text PDF

In this study, a HfTiO compound film on polyethylene naphthalate (PEN) has been investigated and designed as the selective layer material to fabricate flexible selector devices, since a selector is considered as a promising candidate for solving the sneak current issues in high-density memory integration. According to material analysis, hafnium nanocrystals observed in the HfTiO film play a key role in the performance improvement of the selector. The correlation between the HfTiO material and the corresponding current conduction mechanisms and the proposed physical mechanism model with hafnium nanocrystals have been thoroughly investigated to clarify and explain the enhanced selective behavior including high uniformity, excellent endurance and fast operation speed.

View Article and Find Full Text PDF

In this study, the hopping conduction distance and bipolar switching properties of the Gd:SiOx thin film by (radio frequency, rf) rf sputtering technology for applications in RRAM devices were calculated and investigated. To discuss and verify the electrical switching mechanism in various different constant compliance currents, the typical current versus applied voltage () characteristics of gadolinium oxide RRAM devices was transferred and fitted. Finally, the transmission electrons' switching behavior between the TiN bottom electrode and Pt top electrode in the initial metallic filament forming process of the gadolinium oxide thin film RRAM devices for low resistance state (LRS)/high resistance state (HRS) was described and explained in a simulated physical diagram model.

View Article and Find Full Text PDF

A nitridation treatment technology with a urea/ammonia complex nitrogen source improved resistive switching property in HfO-based resistive random access memory (RRAM). The nitridation treatment produced a high performance and reliable device which results in superior endurance (more than 10 cycles) and a self-compliance effect. Thus, the current conduction mechanism changed due to defect passivation by nitrogen atoms in the HfO thin film.

View Article and Find Full Text PDF

This study proposes a method for a HfO-based device to exhibit both resistive switching (RS) characteristics as resistive random access memory (RRAM) and selector characteristics by introducing vanadium (V) as the top electrode. This simple V/HfO/TiN structure can demonstrate these two different properties depending on forming polarities. The RS mechanism is activated by a positive forming bias.

View Article and Find Full Text PDF