This paper presents a full-frame laser projection display system in which a spatial light modulator (SLM) is used for beam shaping and speckle suppression. Phase-only computer-generated holograms (CGHs) are used to transform a cross section of the incident laser beam into a square nearly the same size as that of the display device. Under different initial conditions, the diffraction patterns generated by the CGHs possess identical intensity distributions but differ with regard to random phase distribution.
View Article and Find Full Text PDFThe speckle phenomenon is an annoyance in laser projection display systems. We propose a novel speckle suppression method that utilizes the interference concept on a pixel point, which reduces the speckle contrast (SC) of the project image by limiting the phase distribution range in the optical field. The SC formula is derived in the uniform interval phase range for partially developed speckle conditions, showing that the SC can be lowered by lessening the phase range limitation.
View Article and Find Full Text PDFA mathematical model is derived, and numerical simulation is analyzed for laser beam shaping by using multilevel phase-only diffractive optical elements (DOEs). We used the simulated annealing algorithm to design the beam shapers. The result has an essential effect on the diffractive pattern quality caused by the spatial frequency composition of target patterns for the same incident gaussian beam size and target pattern area.
View Article and Find Full Text PDF