Publications by authors named "Kshitij Verma"

Background: Most patients in opioid treatment programs (OTPs) attend daily for observed dosing. A Stage IA (create and adapt) and a Stage IB (feasibility and pilot) mixed method studies tested a web-application (app) designed to facilitate access to take-home methadone.

Methods: A Stage IA, intervention development study, used qualitative interviews to assess the usability (ease of use) and feasibility (ability to implement) of a take-home methadone app.

View Article and Find Full Text PDF

We hypothesized that the proximity-driven ubiquitylation of E3-interacting small molecules could affect the degradation of E3 ubiquitin ligases. A series of XIAP BIR2 domain-binding small molecules was modified to append a nucleophilic primary amine. This modification transforms XIAP binders into inducers of XIAP degradation.

View Article and Find Full Text PDF

Free radicals, generally composed of reactive oxygen species (ROS) and reactive nitrogen species (RNS), are generated in the body by various endogenous and exogenous systems. The overproduction of free radicals is known to cause several chronic diseases including cancer. However, increased production of free radicals by chemotherapeutic drugs is also associated with apoptosis in cancer cells, indicating the dual nature of free radicals.

View Article and Find Full Text PDF
Article Synopsis
  • AKR1C3 is an enzyme that produces prostaglandins, which help myeloid precursor cells grow in the bone marrow, and it's overexpressed in certain leukemias, making the disease harder to treat.
  • * Inhibition of AKR1C3 could be beneficial since it is associated with resistance to common leukemia drugs like daunorubicin and cytarabine.
  • * Researchers found inhibitors that are highly selective for AKR1C3, showing promising results in restoring the effectiveness of chemotherapy in leukemia cells, allowing for significantly lower doses of the drugs.
View Article and Find Full Text PDF

Aldo-keto reductase 1C3 (AKR1C3), also known as type 5 17 β-hydroxysteroid dehydrogenase, is responsible for intratumoral androgen biosynthesis, contributing to the development of castration-resistant prostate cancer (CRPC) and eventual chemotherapeutic failure. Significant upregulation of AKR1C3 is observed in CRPC patient samples and derived CRPC cell lines. As AKR1C3 is a downstream steroidogenic enzyme synthesizing intratumoral testosterone (T) and 5α-dihydrotestosterone (DHT), the enzyme represents a promising therapeutic target to manage CRPC and combat the emergence of resistance to clinically employed androgen deprivation therapy.

View Article and Find Full Text PDF

Mitochondrial complex II (CII) is an emerging target for numerous human diseases. Sixteen analogues of the CII inhibitor natural product atpenin A5 were prepared to evaluate the structure-activity relationship of the C5 pyridine side chain. The side chain ketone moiety was determined to be pharmacophoric, engendering a bioactive conformation.

View Article and Find Full Text PDF

Background And Objectives: Parkinson's disease is a chronic neurological disorder that directly affects human gait. It leads to slowness of movement, causes muscle rigidity and tremors. Analyzing human gait serves to be useful in studies aiming at early recognition of the disease.

View Article and Find Full Text PDF

We report the design, synthesis, and evaluation of potent and selective inhibitors of aldo-keto reductase 1C3 (AKR1C3), an important enzyme in the regulatory pathway controlling proliferation, differentiation, and apoptosis in myeloid cells. Combination treatment with the nontoxic AKR1C3 inhibitors and etoposide or daunorubicin in acute myeloid leukemia cell lines, elicits a potent adjuvant effect, potentiating the cytotoxicity of etoposide by up to 6.25-fold and the cytotoxicity of daunorubicin by >10-fold.

View Article and Find Full Text PDF

Aldo-keto reductase 1C3 (AKR1C3), also known as type 5 17β-hydroxysteroid dehydrogenase, is a downstream steroidogenic enzyme and converts androgen precursors to the potent androgen receptor ligands: testosterone and 5α-dihydrotestosterone. Studies have shown that AKR1C3 is involved in the development of castration resistant prostate cancer (CRPC) and that it is a rational drug target for the treatment of CRPC. Baccharin, a component of Brazilian propolis, has been observed to exhibit a high inhibitory potency and selectivity for AKR1C3 over other AKR1C isoforms and is a promising lead compound for developing more potent and selective inhibitors.

View Article and Find Full Text PDF