Publications by authors named "Kshitij Khatri"

Biotherapeutic masses are a means of verifying identity and structural integrity. Mass spectrometry (MS) of intact proteins or protein subunits provides an easy analytical tool for different stages of biopharmaceutical development. The protein's identity is confirmed when the experimental mass from MS is within a pre-defined mass error range of the theoretical mass.

View Article and Find Full Text PDF

Background: Loss-of-function mutations in the GBA1 gene are one of the most common genetic risk factors for onset of Parkinson's disease and subsequent progression (GBA-PD). GBA1 encodes the lysosomal enzyme glucocerebrosidase (GCase), a promising target for a possible first disease-modifying therapy. LTI-291 is an allosteric activator of GCase, which increases the activity of normal and mutant forms of GCase.

View Article and Find Full Text PDF

Background: Molecules related to glucocerebrosidase (GCase) are potential biomarkers for development of compounds targeting GBA1-associated Parkinson's disease (GBA-PD).

Objectives: Assessing variability of various glycosphingolipids (GSLs) in plasma, peripheral blood mononuclear cells (PBMCs), and cerebrospinal fluid (CSF) across GBA-PD, idiopathic PD (iPD), and healthy volunteers (HVs).

Methods: Data from five studies were combined.

View Article and Find Full Text PDF

Detailed characterization of protein reagents and biopharmaceuticals is key in defining successful drug discovery campaigns, aimed at bringing molecules through different discovery stages up to development and commercialization. There are many challenges in this process, with complex and detailed analyses playing paramount roles in modern industry. Mass spectrometry (MS) has become an essential tool for characterization of proteins ever since the onset of soft ionization techniques and has taken the lead in quality assessment of biopharmaceutical molecules, and protein reagents, used in the drug discovery pipeline.

View Article and Find Full Text PDF

Background: Metam potassium (metam-K) is a soil fumigant widely used to control plant pathogens, nematodes, and weeds in Florida plasticulture production. The objective of the study was to determine the efficacy of metam-K against Fusarium oxysporum, Macrophomina phaseolina, Meloidogyne javanica, and seven important weed species under controlled conditions. The optimal rates generated in this study provide insight into the efficacy of metam-K for field application.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurological disorder characterized by the progressive loss of functional dopaminergic neurons in the nigrostriatal pathway in the brain. Although current treatments provide only symptomatic relief, gene therapy has the potential to slow or halt the degeneration of nigrostriatal dopamine neurons in PD patients. Adeno-associated viruses (AAV) are vectors of choice in gene therapy because of their well-characterized safety and efficacy profiles; however, although gene therapy has been successful in preclinical models of the disease, clinical trials in humans have failed to demonstrate efficacy.

View Article and Find Full Text PDF

Innate immunity is critical in the early containment of influenza A virus (IAV) infection, and surfactant protein D (SP-D) plays a crucial role in the pulmonary defense against IAV. In pigs, which are important intermediate hosts during the generation of pandemic IAVs, SP-D uses its unique carbohydrate recognition domain (CRD) to interact with IAV. An -linked CRD glycosylation provides interactions with the sialic acid-binding site of IAV, and a tripeptide loop at the lectin-binding site facilitates enhanced interactions with IAV glycans.

View Article and Find Full Text PDF

Analysis of singly glycosylated peptides has evolved to a point where large-scale LC-MS analyses can be performed at almost the same scale as proteomics experiments. While collisionally activated dissociation (CAD) remains the mainstay of bottom-up analyses, it performs poorly for the middle-down analysis of multiply glycosylated peptides. With improvements in instrumentation, electron-activated dissociation (ExD) modes are becoming increasingly prevalent for proteomics experiments and for the analysis of fragile modifications such as glycosylation.

View Article and Find Full Text PDF

Heparan sulfate (HS) is a polysaccharide fundamentally important for biologically activities. T/Tn antigens are universal carbohydrate cancer markers. Here, we report the specific imaging of these carbohydrates using a mesenchymal stem cell line and human umbilical vein endothelial cells (HUVEC).

View Article and Find Full Text PDF

A major challenge in glycomics is the characterization of complex glycan structures that are essential for understanding their diverse roles in many biological processes. We present a novel efficient computational approach, named GlycoDeNovo, for accurate elucidation of the glycan topologies from their tandem mass spectra. Given a spectrum, GlycoDeNovo first builds an interpretation-graph specifying how to interpret each peak using preceding interpreted peaks.

View Article and Find Full Text PDF

Glycomics and glycoproteomics analyses by mass spectrometry require efficient front-end separation methods to enable deep characterization of heterogeneous glycoform populations. Chromatography methods are generally limited in their ability to resolve glycoforms using mobile phases that are compatible with online liquid chromatography-mass spectrometry (LC-MS). The adoption of capillary electrophoresis-mass spectrometry methods (CE-MS) for glycomics and glycoproteomics is limited by the lack of convenient interfaces for coupling the CE devices to mass spectrometers.

View Article and Find Full Text PDF

An ion mobility quadrupole time-of-flight mass spectrometer was used to examine the gas-phase structures of a set of glycopeptides resulting from proteolytic digestion of the well-characterized glycoproteins bovine ribonuclease B, human transferrin, bovine fetuin and human α-acid glycoprotein, the corresponding deglycosylated peptides, and the glycans released by the endoglycosidase PNGase F. When closely related glycoforms did not occur naturally, exoglycosidases were used to achieve stepwise removal of individual saccharide units from the nonreducing termini of the multiantennary structures. Collision cross sections (CCS) were calculated and plotted as a function of mass-to-charge ratio.

View Article and Find Full Text PDF

Low-molecular weight heparins (LMWH) prepared by partial depolymerization of unfractionated heparin are used globally to treat coagulation disorders on an outpatient basis. Patent protection for several LMWH has expired and abbreviated new drug applications have been approved by the Food and Drug Administration. As a result, reverse engineering of LMWH for biosimilar LMWH has become an active global endeavor.

View Article and Find Full Text PDF

In order to interpret glycopeptide tandem mass spectra, it is necessary to estimate the theoretical glycan compositions and peptide sequences, known as the search space. The simplest way to do this is to build a naïve search space from sets of glycan compositions from public databases and to assume that the target glycoprotein is pure. Often, however, purified glycoproteins contain co-purified glycoprotein contaminants that have the potential to confound assignment of tandem mass spectra based on naïve assumptions.

View Article and Find Full Text PDF

Despite sustained biomedical research effort, influenza A virus remains an imminent threat to the world population and a major healthcare burden. The challenge in developing vaccines against influenza is the ability of the virus to mutate rapidly in response to selective immune pressure. Hemagglutinin is the predominant surface glycoprotein and the primary determinant of antigenicity, virulence and zoonotic potential.

View Article and Find Full Text PDF

Glycoproteomics involves the study of glycosylation events on protein sequences ranging from purified proteins to whole proteome scales. Understanding these complex post-translational modification (PTM) events requires elucidation of the glycan moieties (monosaccharide sequences and glycosidic linkages between residues), protein sequences, as well as site-specific attachment of glycan moieties onto protein sequences, in a spatial and temporal manner in a variety of biological contexts. Compared with proteomics, bioinformatics for glycoproteomics is immature and many researchers still rely on tedious manual interpretation of glycoproteomics data.

View Article and Find Full Text PDF

Despite the publication of several software tools for analysis of glycopeptide tandem mass spectra, there remains a lack of consensus regarding the most effective and appropriate methods. In part, this reflects problems with applying standard methods for proteomics database searching and false discovery rate calculation. While the analysis of small post-translational modifications (PTMs) may be regarded as an extension of proteomics database searching, glycosylation requires specialized approaches.

View Article and Find Full Text PDF

Extracellular matrixes comprise glycoproteins, glycosaminoglycans and proteoglycans that order the environment through which cells receive signals and communicate. Proteomic and glycomic molecular signatures from tissue surfaces can add diagnostic power to the immunohistochemistry workflows. Acquired in a spatially resolved manner, such proteomic and glycomic information can help characterize disease processes and be easily applied in a clinical setting.

View Article and Find Full Text PDF

A glycoprotein may contain several sites of glycosylation, each of which is heterogeneous. As a consequence of glycoform diversity and signal suppression from nonglycosylated peptides that ionize more efficiently, typical reversed-phase LC-MS and bottom-up proteomics database searching workflows do not perform well for identification of site-specific glycosylation for complex glycoproteins. We present an LC-MS system for enrichment, separation, and analysis of glycopeptides from complex glycoproteins (>4 N-glycosylation sequons) in a single step.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session544ien421b5jh7qqkqt6spfr6av764jc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once