Studying the neural basis of human dynamic visual perception requires extensive experimental data to evaluate the large swathes of functionally diverse brain neural networks driven by perceiving visual events. Here, we introduce the BOLD Moments Dataset (BMD), a repository of whole-brain fMRI responses to over 1000 short (3 s) naturalistic video clips of visual events across ten human subjects. We use the videos' extensive metadata to show how the brain represents word- and sentence-level descriptions of visual events and identify correlates of video memorability scores extending into the parietal cortex.
View Article and Find Full Text PDFTo navigate through their immediate environment humans process scene information rapidly. How does the cascade of neural processing elicited by scene viewing to facilitate navigational planning unfold over time? To investigate, we recorded human brain responses to visual scenes with electroencephalography and related those to computational models that operationalize three aspects of scene processing (2D, 3D, and semantic information), as well as to a behavioral model capturing navigational affordances. We found a temporal processing hierarchy: navigational affordance is processed later than the other scene features (2D, 3D, and semantic) investigated.
View Article and Find Full Text PDFThe human brain achieves visual object recognition through multiple stages of linear and nonlinear transformations operating at a millisecond scale. To predict and explain these rapid transformations, computational neuroscientists employ machine learning modeling techniques. However, state-of-the-art models require massive amounts of data to properly train, and to the present day there is a lack of vast brain datasets which extensively sample the temporal dynamics of visual object recognition.
View Article and Find Full Text PDFTo interact with objects in complex environments, we must know what they are and where they are in spite of challenging viewing conditions. Here, we investigated where, how and when representations of object location and category emerge in the human brain when objects appear on cluttered natural scene images using a combination of functional magnetic resonance imaging, electroencephalography and computational models. We found location representations to emerge along the ventral visual stream towards lateral occipital complex, mirrored by gradual emergence in deep neural networks.
View Article and Find Full Text PDFThe human visual cortex enables visual perception through a cascade of hierarchical computations in cortical regions with distinct functionalities. Here, we introduce an AI-driven approach to discover the functional mapping of the visual cortex. We related human brain responses to scene images measured with functional MRI (fMRI) systematically to a diverse set of deep neural networks (DNNs) optimized to perform different scene perception tasks.
View Article and Find Full Text PDFVisual scene perception is mediated by a set of cortical regions that respond preferentially to images of scenes, including the occipital place area (OPA) and parahippocampal place area (PPA). However, the differential contribution of OPA and PPA to scene perception remains an open research question. In this study, we take a deep neural network (DNN)-based computational approach to investigate the differences in OPA and PPA function.
View Article and Find Full Text PDFDeep neural networks (DNNs) have recently been applied successfully to brain decoding and image reconstruction from functional magnetic resonance imaging (fMRI) activity. However, direct training of a DNN with fMRI data is often avoided because the size of available data is thought to be insufficient for training a complex network with numerous parameters. Instead, a pre-trained DNN usually serves as a proxy for hierarchical visual representations, and fMRI data are used to decode individual DNN features of a stimulus image using a simple linear model, which are then passed to a reconstruction module.
View Article and Find Full Text PDF