Alzheimer's disease (AD) is the most widespread late-life dementia and involves the prefrontal cortex, a vulnerable brain region implicated in memory, emotion, cognition, and decision-making behavior. To understand the molecular differences between the effects of aging and AD on the prefrontal cortex, this study characterized the age-dependent changes in gene expression in Wistar rats (control) and OXYS rats (rodents that simulate key characteristics of sporadic AD) using RNA sequencing. We found that major altered biological processes during aging in Wistar rats were associated with immune processes.
View Article and Find Full Text PDFBackground: Cerebrovascular dysfunction plays a critical role in the pathogenesis of Alzheimer's disease (AD): the most common cause of dementia in the elderly. The involvement of neurovasculature disorders in the progression of AD is now increasingly appreciated, but whether they represent initial factors or late-stage pathological changes during the disease is unclear. Using senescence-accelerated OXYS rats, which simulate key characteristics of sporadic AD, we evaluated contributions of cerebrovascular alterations to the disease development.
View Article and Find Full Text PDFMitochondrial aberrations are observed in human Alzheimer's disease (AD) and in medical conditions that increase the risk of this disorder, suggesting that mitochondrial dysfunction may contribute to pathophysiology of AD. Here, using OXYS rats that simulate key characteristics of sporadic AD, we set out to determine the role of mitochondria in the pathophysiology of this disorder. OXYS rats were treated with a mitochondria-targeted antioxidant SkQ1 from age 12 to 18 months, that is, during active progression of AD-like pathology in these animals.
View Article and Find Full Text PDFMelatonin is a multifunctional molecule and plays a crucial role in the regulation of circadian rhythms. The role of melatonin in the protection of the central nervous system is well documented. Therefore, melatonin was proposed as a possible therapeutic agent for reducing the severity of Alzheimer's disease (AD), a progressive neurodegenerative disease characterized by cognitive decline and memory dysfunction.
View Article and Find Full Text PDFThe amyloid cascade hypothesis posits that deposition of the amyloid β (Aβ) peptide in the brain is a key event in the initiation of Alzheimer's disease (AD). Nonetheless, it now seems increasingly unlikely that amyloid toxicity is the cause of sporadic AD, which leads to cognitive decline. Here, using accelerated-senescence nontransgenic OXYS rats, we confirmed that aggregation of Aβ is a later event in AD-like pathology.
View Article and Find Full Text PDFMelatonin synthesis is disordered in patients with Alzheimer's disease (AD). To determine the role of melatonin in the pathogenesis of AD, suitable animal models are needed. The OXYS rats are an experimental model of accelerated senescence that has also been proposed as a spontaneous rat model of AD-like pathology.
View Article and Find Full Text PDF