Publications by authors named "Kseniya V Shishova"

Here we provide data on accessibility of nucleolus-like bodies (NLBs) of fully-grown (GV) mouse oocytes to fluorescence in situ hybridization (FISH) probes and anti-nucleolar antibodies as well as on oocyte general morphology and large scale chromatin configuration, which relate to the research article "High-resolution microscopy of active ribosomal genes and key members of the rRNA processing machinery inside nucleolus-like bodies of fully-grown mouse oocytes" (Shishova et al., 2015 [1]). Experimental factors include: a cross-linking reagent formaldehyde and two denaturing fixatives, such as 70% ethanol and a mixture of absolute methanol and glacial acetic acid (3:1, v/v).

View Article and Find Full Text PDF

Nucleolus-like bodies (NLBs) of fully-grown (germinal vesicle, GV) mammalian oocytes are traditionally considered as morphologically distinct entities, which, unlike normal nucleoli, contain transcribed ribosomal genes (rDNA) solely at their surface. In the current study, we for the first time showed that active ribosomal genes are present not only on the surface but also inside NLBs of the NSN-type oocytes. The "internal" rRNA synthesis was evidenced by cytoplasmic microinjections of BrUTP as precursor and by fluorescence in situ hybridization with a probe to the short-lived 5'ETS segment of the 47S pre-rRNA.

View Article and Find Full Text PDF

It is well known that fully-grown mammalian oocytes, rather than typical nucleoli, contain prominent but structurally homogenous bodies called "nucleolus-like bodies" (NLBs). NLBs accumulate a vast amount of material, but their biochemical composition and functions remain uncertain. To clarify the composition of the NLB material in mouse GV oocytes, we devised an assay to detect internal oocyte proteins with fluorescein-5-isothiocyanate (FITC) and applied the fluorescent RNA-binding dye acridine orange to examine whether NLBs contain RNA.

View Article and Find Full Text PDF