Reactive oxygen species (ROS) regulate both normal cell functions by activating a number of enzymatic cascades and pathological processes in many diseases by inducing oxidative stress. For many years since the discovery of ROS in biological systems there were no adequate methods of detection and quantification of these molecules inside the living cells. We developed the first genetically encoded fluorescent indicator for intracellular detection of hydrogen peroxide, HyPer, that can be used for imaging of HO production by cells under various physiological and pathological conditions.
View Article and Find Full Text PDFHyPer, a ratiometric genetically encoded fluorescent sensor, is a popular tool for intracellular hydrogen peroxide detection. When expressed in cultured cells, the freely diffusing version of the sensor (HyPer-cyto) detects temporal patterns of H2O2 generation. However, rapid diffusion of the probe within the nucleocytoplasmic compartment averages the H2O2 signal even in cases of local oxidant production.
View Article and Find Full Text PDFThe fluorescent sensor HyPer allows monitoring of intracellular H2O2 levels with a high degree of sensitivity and specificity. Here, we provide a detailed protocol of ratiometric imaging of H2O2 produced by cells during phagocytosis, including instructions for experiments on different commercial confocal systems, namely, Leica SP2, Leica SP5, and Carl Zeiss LSM, as well as wide-field Leica 6000 microscope. The general experimental scheme is easily adaptable for imaging H2O2 production by various cell types under a variety of conditions.
View Article and Find Full Text PDFHydrogen peroxide is an important second messenger controlling intracellular signaling cascades by selective oxidation of redox active thiolates in proteins. Changes in intracellular [H(2)O(2)] can be tracked in real time using HyPer, a ratiometric genetically encoded fluorescent probe. Although HyPer is sensitive and selective for H(2)O(2) due to the properties of its sensing domain derived from the Escherichia coli OxyR protein, many applications may benefit from an improvement of the indicator's dynamic range.
View Article and Find Full Text PDFAntioxid Redox Signal
January 2011
Understanding of redox signaling requires data on the spatiotemporal distribution of hydrogen peroxide (H(2)O(2)) within the cell. The fluorescent reporter HyPer is a powerful instrument for H(2)O(2) imaging. However, rapid diffusion of HyPer throughout the nucleocytoplasmic compartment does not allow visualization of H(2)O(2) gradients on the micrometer scale.
View Article and Find Full Text PDFReactive oxygen species (ROS) regulate both normal cell functions by activating a number of enzymatic cascades and pathological processes in many diseases by inducing oxidative stress. For many years since the discovery of ROS in biological systems, there were no adequate methods of detection and quantification of these molecules inside the living cells. We developed the first genetically encoded fluorescent indicator for the intracellular detection of hydrogen peroxide, HyPer, that can be used for imaging of H2O2 production by cells under various physiological and pathological conditions.
View Article and Find Full Text PDF