The levels and activity of the enzyme paraoxonase 1 affect the vulnerability to the teratogenic effects of organophosphate pesticides. Mutant mice lacking the gene for paraoxonase1 (PON1-/-) are more susceptible to the toxic effects of chlorpyrifos, and were hypothesized to be more vulnerable to social behavior deficits induced by exposure to chlorpyrifos during gestation. Three experiments were performed comparing PON1-/- mice to PON1+/+ mice born to dams treated with 0.
View Article and Find Full Text PDF[This corrects the article on p. 372 in vol. 10, PMID: 29170629.
View Article and Find Full Text PDFThe embryonic formation of midbrain dopaminergic (mDA) neurons provides critical guidelines for the differentiation of mDA neurons from stem cells, which are currently being developed for Parkinson's disease cell replacement therapy. Bone morphogenetic protein (BMP)/SMAD inhibition is routinely used during early steps of stem cell differentiation protocols, including for the generation of mDA neurons. However, the function of the BMP/SMAD pathway for specification of mammalian mDA neurons is virtually unknown.
View Article and Find Full Text PDFHydrocephalus can occur in children alone or in combination with other neurodevelopmental disorders that are often associated with brain overgrowth. Despite the severity of these disorders, the molecular and cellular mechanisms underlying these pathologies and their comorbidity are poorly understood. Here, we studied the consequences of genetically inactivating in mice dual-specificity phosphatase 16 (), which is known to negatively regulate mitogen-activated protein kinases (MAPKs) and which has never previously been implicated in brain development and disorders.
View Article and Find Full Text PDFStudying the development of mesodiencephalic dopaminergic (mdDA) neurons provides an important basis for better understanding dopamine-associated brain functions and disorders and is critical for establishing cell replacement therapy for Parkinson's disease. The transcription factors Otx2 and Lmx1b play a key role in the development of mdDA neurons. However, little is known about the genes downstream of Otx2 and Lmx1b in the pathways controlling the formation of mdDA neurons in vivo.
View Article and Find Full Text PDFSubtle mood fluctuations are normal emotional experiences, whereas drastic mood swings can be a manifestation of bipolar disorder (BPD). Despite their importance for normal and pathological behavior, the mechanisms underlying endogenous mood instability are largely unknown. During embryogenesis, the transcription factor Otx2 orchestrates the genetic networks directing the specification of dopaminergic (DA) and serotonergic (5-HT) neurons.
View Article and Find Full Text PDF