Publications by authors named "Ksenia Zaripova"

During skeletal muscle unloading, phosphoinositide 3-kinase (PI3K), and especially PI3K gamma (PI3Kγ), can be activated by changes in membrane potential. Activated IP3 can increase the ability of Ca to enter the nucleus through IP3 receptors. This may contribute to the activation of transcription factors that initiate muscle atrophy processes.

View Article and Find Full Text PDF

The current study aimed to investigate the hypothesis that purinergic receptors P2Y1 and P2Y2 play a regulatory role in gene expression in unloaded muscle. ATP is released from cells through pannexin channels, and it interacts with P2Y1 and P2Y2 receptors, leading to the activation of markers of protein catabolism and a reduction in protein synthesis. To test this hypothesis thirty-two rats were randomly divided into four groups (8 per group): a non-treated control group (C), a group subjected to three days of hindlimb unloading with a placebo (HS), a group subjected to three days of hindlimb unloading treated with a P2Y1 receptor inhibitor, MRS2179 (HSM), and a group subjected to three days of hindlimb unloading treated with a P2Y2 receptor inhibitor, AR-C 118925XX (HSA).

View Article and Find Full Text PDF

Skeletal muscle abnormalities and atrophy during unloading are accompanied by the accumulation of excess calcium in the sarcoplasm. We hypothesized that calcium accumulation may occur, among other mechanisms, due to the inhibition of sarco/endoplasmic reticulum Ca-ATPase (SERCA) activity. Consequently, the use of the SERCA activator will reduce the level of calcium in the sarcoplasm and prevent the negative consequences of muscle unloading.

View Article and Find Full Text PDF

Muscle unloading leads to signaling alterations that cause muscle atrophy and weakness. The cellular energy sensor AMPK can regulate myofiber-type shift, calcium-dependent signaling and ubiquitin-proteasome system markers. We hypothesized that the prevention of p-AMPK downregulation during the first week of muscle unloading would impede atrophy development and the slow-to-fast shift of soleus muscle fibers, and the aim of the study was to test this hypothesis.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated how metformin affects calcium-dependent signaling, protein synthesis markers, and E3 ubiquitin ligase expression during muscle unloading in male Wistar rats.
  • Results showed that hindlimb suspension decreased p-AMPK and increased ATP levels, while metformin treatment reversed these changes and affected various signaling pathways.
  • Additionally, metformin reduced the expression of markers related to protein breakdown (MuRF1 and MAFbx) but did not impact the autophagic pathway indicator (ULK-1).
View Article and Find Full Text PDF

Skeletal muscle unloading results in atrophy. We hypothesized that pannexin 1 ATP-permeable channel (PANX1) is involved in the response of muscle to unloading. We tested this hypothesis by blocking PANX1, which regulates efflux of ATP from the cytoplasm.

View Article and Find Full Text PDF