Current equipment and methods for preparation of radiopharmaceuticals for positron emission tomography (PET) are expensive and best suited for large-scale multi-doses batches. Microfluidic radiosynthesizers have been shown to provide an economic approach to synthesize these compounds in smaller quantities, but can also be scaled to clinically-relevant levels. Batch microfluidic approaches, in particular, offer significant reduction in system size and reagent consumption.
View Article and Find Full Text PDFEJNMMI Radiopharm Chem
December 2020
Background: Current automated radiosynthesizers are generally optimized for producing large batches of PET tracers. Preclinical imaging studies, however, often require only a small portion of a regular batch, which cannot be economically produced on a conventional synthesizer. Alternative approaches are desired to produce small to moderate batches to reduce cost and the amount of reagents and radioisotope needed to produce PET tracers with high molar activity.
View Article and Find Full Text PDFFrom an efficiency standpoint, microdroplet reactors enable significant improvements in the preparation of radiopharmaceuticals due to the vastly reduced reaction volume. To demonstrate these advantages, we adapt the conventional (macroscale) synthesis of the clinically-important positron-emission tomography tracer [F]FDOPA, following the nucleophilic diaryliodonium salt approach, to a newly-developed ultra-compact microdroplet reaction platform. In this first microfluidic implementation of [F]FDOPA synthesis, optimized via a high-throughput multi-reaction platform, the radiochemical yield (non-decay-corrected) was found to be comparable to macroscale reports, but the synthesis consumed significantly less precursor and organic solvents, and the synthesis process was much faster.
View Article and Find Full Text PDFBackground: Conventional scale production of small batches of PET tracers (e.g. for preclinical imaging) is an inefficient use of resources.
View Article and Find Full Text PDFIntroduction: Radio thin layer chromatography (radio-TLC) is commonly used to analyze purity of radiopharmaceuticals or to determine the reaction conversion when optimizing radiosynthesis processes. In applications where there are few radioactive species, radio-TLC is preferred over radio-high-performance liquid chromatography due to its simplicity and relatively quick analysis time. However, with current radio-TLC methods, it remains cumbersome to analyze a large number of samples during reaction optimization.
View Article and Find Full Text PDFBackground: Peptides labeled with positron-emitting isotopes are emerging as a versatile class of compounds for the development of highly specific, targeted imaging agents for diagnostic imaging via positron-emission tomography (PET) and for precision medicine via theranostic applications. Despite the success of peptides labeled with gallium-68 (for imaging) or lutetium-177 (for therapy) in the clinical management of patients with neuroendocrine tumors or prostate cancer, there are significant advantages of using fluorine-18 for imaging. Recent developments have greatly simplified such labeling: in particular, labeling of organotrifluoroborates via isotopic exchange can readily be performed in a single-step under aqueous conditions and without the need for HPLC purification.
View Article and Find Full Text PDFThe coupling of gemcitabine with functionalized carboxylic acids using peptide coupling conditions afforded 4-N-alkanoyl analogues with a terminal alkyne or azido moiety. Reaction of 4-N-tosylgemcitabine with azidoalkyl amine provided 4-N-alkyl gemcitabine with a terminal azido group. Click reaction with silane building blocks afforded 4-N-alkanoyl or 4-N-alkyl gemcitabine analogues suitable for fluorination.
View Article and Find Full Text PDF