Publications by authors named "Ksenia Baranova"

This review summarizes the currently known biochemical neuroadaptive mechanisms of remote ischemic conditioning. In particular, it focuses on the significance of the pro-adaptive effects of remote ischemic conditioning which allow for the prevention of the neurological and cognitive impairments associated with hippocampal dysregulation after brain damage. The neuroimmunohumoral pathway transmitting a conditioning stimulus, as well as the molecular basis of the early and delayed phases of neuroprotection, including anti-apoptotic, anti-oxidant, and anti-inflammatory components, are also outlined.

View Article and Find Full Text PDF

Autophagy is a regulated mechanism of degradation of misfolded proteins and organelles in the cell. Neurons are highly differentiated cells with extended projections, and therefore, their functioning largely depends on the mechanisms of autophagy. For the first time in an animal model using immunohistochemistry, dot analysis, and qRT-PCR, the autophagy (macroautophagy) activity in neurons of two brain regions (hippocampus and neocortex) under normoxia and after exposure to hypoxia was studied.

View Article and Find Full Text PDF

This review is devoted to the phenomenon of intermittent hypoxic training and is aimed at drawing the attention of researchers to the necessity of studying the mechanisms mediating the positive, particularly neuroprotective, effects of hypoxic training at the molecular level. The review briefly describes the historical aspects of studying the beneficial effects of mild hypoxia, as well as the use of hypoxic training in medicine and sports. The physiological mechanisms of hypoxic adaptation, models of hypoxic training and their effectiveness are summarized, giving examples of their beneficial effects in various organs including the brain.

View Article and Find Full Text PDF

Transcription factors c-Fos and NGFI-A encoded by immediate early genes largely participate in the biochemical cascade leading to genomically driven lasting adaptation by neurons to injurious exposures including hypoxia/ischemia. Present study was designed to examine the involvement of c-Fos and NGFI-A in the development of brain hypoxic tolerance induced by mild hypoxic preconditioning. Earlier we have reported that preconditioning by repetitive mild hypobaric hypoxia (MHH) considerably increases neuronal resistance to subsequent severe injurious exposures.

View Article and Find Full Text PDF

Preconditioning using mild repetitive hypobaric hypoxia is known to increase a tolerance of brain neurons to severe hypoxia and other injurious exposures. In the present study, the effects of mild hypoxic preconditioning on the expression of transcription factors NF-kappaB and phosphorylated CREB (pCREB) has been studied in the neocortex of rats exposed to severe hypobaric hypoxia. As revealed by quantitative immunocytochemistry, the injurious severe hypobaric hypoxia (180 Torr, 3 h) remarkably reduced the neocortical levels of pCREB and NF-kappaB.

View Article and Find Full Text PDF