Publications by authors named "Krzysztof Zablocki"

Ubiquitin-specific proteases (USPs) are the main members of deubiquitinases (DUBs) that catalyze removing ubiquitin chains from target proteins, thereby modulating their half-life and function. Enzymatic activity of USP21 regulates protein degradation which is critical for maintaining cell homeostasis. USP21 determines the stability of oncogenic proteins and therefore is implicated in carcinogenesis.

View Article and Find Full Text PDF

An increased concentration of palmitate in circulation is one of the most harmful factors in obesity. The von Willebrand factor (vWF), a protein involved in haemostasis, is produced and secreted by the vascular endothelium. An increased level of vWF in obese patients is associated with thrombosis and cardiovascular disease.

View Article and Find Full Text PDF

Muscular dystrophies are inherited neuromuscular diseases, resulting in progressive disability and often affecting life expectancy. The most severe, common types are Duchenne muscular dystrophy (DMD) and Limb-girdle sarcoglycanopathy, which cause advancing muscle weakness and wasting. These diseases share a common pathomechanism where, due to the loss of the anchoring dystrophin (DMD, dystrophinopathy) or due to mutations in sarcoglycan-encoding genes (LGMDR3 to LGMDR6), the α-sarcoglycan ecto-ATPase activity is lost.

View Article and Find Full Text PDF

Mortality of Duchenne Muscular Dystrophy (DMD) is a consequence of progressive wasting of skeletal and cardiac muscle, where dystrophinopathy affects not only muscle fibres but also myogenic cells. Elevated activity of P2X7 receptors and increased store-operated calcium entry have been identified in myoblasts from the mdx mouse model of DMD. Moreover, in immortalized mdx myoblasts, increased metabotropic purinergic receptor response was found.

View Article and Find Full Text PDF

Introduction: One of the key factors that may influence the therapeutic potential of mesenchymal stem/stromal cells (MSCs) is their metabolism. The switch between mitochondrial respiration and glycolysis can be affected by many factors, including the oxygen concentration and the spatial form of culture. This study compared the metabolic features of adipose-derived mesenchymal stem/stromal cells (ASCs) and dedifferentiated fat cells (DFATs) cultivated as monolayer or spheroid culture under 5% O concentration (physiological normoxia) and their impact on MSCs therapeutic abilities.

View Article and Find Full Text PDF

This study aimed to investigate the putative role of nicotinamide N-methyltransferase in the metabolic response of human aortic endothelial cells. This enzyme catalyses S-adenosylmethionine-mediated methylation of nicotinamide to methylnicotinamide. This reaction is accompanied by the reduction of the intracellular nicotinamide and S-adenosylmethionine content.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) leads to disability and death in young men. This disease is caused by mutations in the gene encoding diverse isoforms of dystrophin. Loss of full-length dystrophins is both necessary and sufficient for causing degeneration and wasting of striated muscles, neuropsychological impairment, and bone deformities.

View Article and Find Full Text PDF

Ischemic episodes are a leading cause of death worldwide with limited therapeutic interventions. The current study explored mitochondrial phosphate-activated glutaminase (GLS1) activity modulation by PKCβII through GC-MS untargeted metabolomics approach. Mitochondria were used to elucidate the endogenous resistance of hippocampal CA2-4 and dentate gyrus (DG) to transient ischemia and reperfusion in a model of ischemic episode in gerbils.

View Article and Find Full Text PDF

The gerbil is a well-known model for studying cerebral ischemia. The CA1 of the hippocampus is vulnerable to 5 min of ischemia, while the CA2-4 and dentate gyrus (DG) are resistant to it. Short-lasting ischemia, a model of transient ischemic attacks in men, results in CA1 neuron death within 2-4 days of reperfusion.

View Article and Find Full Text PDF

Statins belong to the most often prescribed medications, which efficiently normalise hyperlipidaemia and prevent cardiovascular complications in obese and diabetic patients. However, beside expected therapeutic results based on the inhibition of 3-hydroxyl-3-methylglutaryl-CoA reductase, these drugs exert multiple side effects of poorly understood characteristic. In this study, side effects of pravastatin and atorvastatin on EA.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) causes severe disability and death of young men because of progressive muscle degeneration aggravated by sterile inflammation. DMD is also associated with cognitive and bone-function impairments. This complex phenotype results from the cumulative loss of a spectrum of dystrophin isoforms expressed from the largest human gene.

View Article and Find Full Text PDF

Pathophysiology of Duchenne Muscular Dystrophy (DMD) is still elusive. Although progressive wasting of muscle fibres is a cause of muscle deterioration, there is a growing body of evidence that the triggering effects of DMD mutation are present at the earlier stage of muscle development and affect myogenic cells. Among these abnormalities, elevated activity of P2X7 receptors and increased store-operated calcium entry myoblasts have been identified in mdx mouse.

View Article and Find Full Text PDF

Previously we showed that a mild stimulation of EA.hy926 cells with tumour necrosis factor alpha (TNFα) activated mitochondrial biogenesis, probably as a mechanism preventing cell death. This was accompanied by an increased phosphorylation of eNOS and elevation of NO release.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is the most common inherited muscle disorder that causes severe disability and death of young men. This disease is characterized by progressive muscle degeneration aggravated by sterile inflammation and is also associated with cognitive impairment and low bone density. Given that no current treatment can improve the long-term outcome, approaches with a strong translational potential are urgently needed.

View Article and Find Full Text PDF

A dyslipidaemia-related increase of the concentration of long-chain fatty acids in the plasma is an important pathological factor substantially increasing risk of serious consequences in vascular endothelium. Inflammatory response, atherosclerosis and insulin resistance seem the most severe. Palmitate at excessive concentrations has been shown to have a harmful effect on endothelial cells impairing NO generation, stimulating reactive oxygen species (ROS) formation and affecting their viability.

View Article and Find Full Text PDF

P2X7 purinoceptor promotes survival or cytotoxicity depending on extracellular adenosine triphosphate (ATP) stimulus intensity controlling its ion channel or P2X7-dependent large pore (LP) functions. Mechanisms governing this operational divergence and functional idiosyncrasy are ill-understood. We have discovered a feedback loop where sustained activation of P2X7 triggers release of active matrix metalloproteinase 2 (MMP-2), which halts ion channel and LP responses via the MMP-2-dependent receptor cleavage.

View Article and Find Full Text PDF

Results of an intensive research performed during last 25 years have revealed that an understanding of biochemical and molecular principles of oxidative phosphorylation has not finished the streak of ground-breaking discoveries of newly identified mitochondrial functions in numerous cellular processes. Among other things it has been shown that mitochondria undergo reversible fission and fusion processes, and may form a complex network which functionally and structurally interacts with the endoplasmic reticulum membranes and probably also other organelles. An organization of mitochondrial network is closely controlled and is of high importance for numerous intracellular processes to occur properly.

View Article and Find Full Text PDF

Mutations in the NPC1 or NPC2 genes lead to Niemann-Pick type C (NPC) disease, a rare lysosomal storage disorder characterized by progressive neurodegeneration. These mutations result in cholesterol and glycosphingolipid accumulation in the late endosomal/lysosomal compartment. Complications in the storage of cholesterol in NPC1 mutant cells are associated with other anomalies, such as altered distribution of intracellular organelles and properties of the plasma membrane.

View Article and Find Full Text PDF

Endothelial cells play an important physiological role in vascular homeostasis. They are also the first barrier that separates blood from deeper layers of blood vessels and extravascular tissues. Thus, they are exposed to various physiological blood components as well as challenged by pathological stimuli, which may exert harmful effects on the vascular system by stimulation of excessive generation of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Mitofusin 2 (Mfn2), mitochondrial outer membrane protein which is involved in rearrangement of these organelles, was first described in pathology of hypertension and diabetes, and more recently much attention is paid to its functions in Charcot-Marie-Tooth type 2A neuropathy (CMT2A). Here, cellular energy metabolism was investigated in mouse embryonic fibroblasts (MEF) differing in the presence of the Mfn2 gene; control (MEFwt) and with Mfn2 gene depleted MEFMfn2-/-. These two cell lines were compared in terms of various parameters characterizing mitochondrial bioenergetics.

View Article and Find Full Text PDF

Sarcolemma damage and activation of various calcium channels are implicated in altered Ca(2+) homeostasis in muscle fibres of both Duchenne muscular dystrophy (DMD) sufferers and in the mdx mouse model of DMD. Previously we have demonstrated that also in mdx myoblasts extracellular nucleotides trigger elevated cytoplasmic Ca(2+) concentrations due to alterations of both ionotropic and metabotropic purinergic receptors. Here we extend these findings to show that the mdx mutation is associated with enhanced store-operated calcium entry (SOCE).

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a neuromuscular disease that arises from mutations in the dystrophin-encoding gene. Apart from muscle pathology, cognitive impairment, primarily of developmental origin, is also a significant component of the disorder. Convergent lines of evidence point to an important role for dystrophin in regulating the molecular machinery of central synapses.

View Article and Find Full Text PDF

Background: Plasma membrane Ca(2+)-ATPases (PMCA) extrude Ca(2+) ions out of the cell and contribute to generation of calcium oscillations. Calcium signaling is crucial for transcriptional regulation of dopamine secretion by neuroendocrine PC12 cells. Low resting [Ca(2+)]c in PC12 cells is maintained mainly by two Ca(2+)-ATPases, PMCA2 and PMCA3.

View Article and Find Full Text PDF

The P2 purinergic (nucleotide) receptor super-family comprises of two families of protein. The P2X, which are channel-forming ionotropic receptors and the P2Y metabotropic receptors activating G protein-mediated signalling pathways. Members of both groups have been identified in skeletal muscle cells at different stages of differentiation.

View Article and Find Full Text PDF