Perovskite crystals-with their exceptional nonlinear optical properties, lasing and waveguiding capabilities-offer a promising platform for integrated photonic circuitry within the strong-coupling regime at room temperature. Here we demonstrate a versatile template-assisted method to efficiently fabricate large-scale waveguiding perovskite crystals of arbitrarily predefined geometry such as microwires, couplers and splitters. We non-resonantly stimulate a condensate of waveguided exciton-polaritons resulting in bright polariton lasing from the transverse interfaces and corners of our perovskite microstructures.
View Article and Find Full Text PDFThe rapid development of artificial neural networks and applied artificial intelligence has led to many applications. However, current software implementation of neural networks is severely limited in terms of performance and energy efficiency. It is believed that further progress requires the development of neuromorphic systems, in which hardware directly mimics the neuronal network structure of a human brain.
View Article and Find Full Text PDFTo increase the laser beam pointing stability required for precise interferometric measurements, we designed an active laser beam angular stabilization system. We used two recently proposed techniques: an interferometric measurement method of laser beam angular deflection which allows compact sensor design and a double wedge-prism beam deflector for precise laser beam steering. Our system provides long-term angular stabilization independently in the horizontal and the vertical planes, providing a hundredfold reduction of the output beam deviations.
View Article and Find Full Text PDFRev Sci Instrum
February 2018
Aiming to increase laser beam pointing stability required in interferometric measurements, we designed a laser beam deflector intended for active laser beam stabilization systems. The design is based on two wedge-prisms: the deflecting wedge driven by a tilting piezo-platform and the fixed wedge to compensate initial beam deflection. Our design allows linear beam steering, independently in the horizontal or vertical direction, with resolution of less than 1 μrad in a range of more than 100 μrad, and no initial deflection of the beam.
View Article and Find Full Text PDFNanoscale Res Lett
December 2015
Following the rapid development of the electronics industry and technology, it is expected that future electronic devices will operate based on functional units at the level of electrically active molecules or even atoms. One pathway to observe and characterize such fundamental operation is to focus on identifying isolated or coupled dopants in nanoscale silicon transistors, the building blocks of present electronics. Here, we review some of the recent progress in the research along this direction, with a focus on devices fabricated with simple and CMOS-compatible-processing technology.
View Article and Find Full Text PDF