We demonstrate numerically how a spin wave (SW) beam obliquely incident on the edge of a thin film placed below a ferromagnetic stripe can excite leaky SWs guided along the stripe. During propagation, leaky waves emit energy back into the layer in the form of plane waves and several laterally shifted parallel SW beams. This resonance excitation, combined with interference effects of the reflected and re-emitted waves, results in the magnonic Wood's anomaly and a significant increase of the Goos-Hänchen shift magnitude.
View Article and Find Full Text PDFSubwavelength resonant elements are essential building blocks of metamaterials and metasurfaces, which have revolutionized photonics. Despite similarities between different wave phenomena, other types of interactions can make subwavelength coupling significantly distinct; its investigation in their context is therefore of interest both from the physics and applications perspective. In this work, we demonstrate a fully magnonic Gires-Tournois interferometer based on a subwavelength resonator made of a narrow ferromagnetic stripe lying above the edge of a ferromagnetic film.
View Article and Find Full Text PDF