The main goal of this experimental work is screening of different natural and synthetic nanomaterials and biopolymers that may improve elimination of stable micropollutants from water phase. In this work, as a target chemical acting as the micropollutant molecule, the Brilliant Blue (BB) dye was selected. We tested different active matrices dispersed in water phase including activated carbon (AC), lyophilized graphene oxide (GO), β-cyclodextrin (CD), raw dandelion pappus (DP), microcrystalline cellulose(MC), and raw pine pollen (PP), as well as two types of Egyptian Blue mineral pigments (EB1 and EB2).
View Article and Find Full Text PDFInt J Environ Res Public Health
August 2020
In the latest literature search, the technology based on graphite oxide (GO) nanomaterials exhibits a great potential in many aspects of wastewater treatment involving adsorption, photocatalysis, disinfection and membrane process. In this study experimental data involving the carbon element in different forms such as active carbon (AC), graphite and graphene oxide (GO) applied as the active reagents in wastewater treatment are summarized and discussed. The first step was to characterize the aforementioned carbon materials and nanoparticles using various complementary techniques.
View Article and Find Full Text PDFThere is great interest in the search for multifunctional waste-based materials that may be applied as environmentally friendly adsorbents. Iron-rich sludge from ground drinking-water treatment plants may be considered a potential adsorbent for various water contaminants. This material is generated during ground water purification because of the excess of metal ions in water (Fe, Mn).
View Article and Find Full Text PDFSynthetic dyes or colorants are key chemicals for various industries producing textiles, food, cosmetics, pharmaceutics, printer inks, leather, and plastics. Nowadays, the textile industry is the major consumer of dyes. The mass of synthetic colorants used by this industry is estimated at the level of 1 ÷ 3 × 105 tons, in comparison with the total annual consumption of around 7 × 105 tons worldwide.
View Article and Find Full Text PDFThe main goal of this review is to summarize practical approaches concerning the application of microfluidic systems for the analysis of various biomarkers and pollutants, as well as microbes, in water and wastewater matrixes. This problem involves multidisciplinary expertise combining research knowledge from various areas, including wet chemistry, biochemistry, physical chemistry, molecular biology, genetics, signal processing, microelectronics material science, and separation science. It has been documented that fairly primitive but fast and inexpensive screening methods involving paper-based analytical devices (PADs) and micro total analytical systems (μTAS) can be considered as serious alternatives to their more advanced counterparts such as GC, HPLC, and capillary electrophoresis coupled to various sophisticated detectors (e.
View Article and Find Full Text PDFWe report the results of experimental work focusing on host-guest supramolecular complex creation between macrocyclic compound (β-cyclodextrin) and 1-acenaphthenol enantiomers (racemic mixture) in liquid phase composed of 35% acetonitrile in water (v/v) at different temperatures ranging from 0 to 90 °C. Experimental setup involved several analytical protocols based on classical non-forced flow planar chromatography (RP-18 TLC plates), micro-TLC (RP-18 W HPTLC plates), column chromatography (HPLC with C-18 and C-30 stationary phases), as well as UV-Vis spectrophotometry and optical microscopy. It has been found that under various planar chromatographic conditions (stationary plates type, chamber shape and volume, development mode, and saturation) non-typical retention properties (extremely high retention) of 1-acenaphthenol at subambient temperatures can be observed.
View Article and Find Full Text PDFAnalysis and quantification of multiple analytes in complex samples originating from food and environmental matrixes generate large data sets that can be difficult to analyze and interpret. Multivariate analysis and related computation protocols provide an effective platform and enable such problems to be dealt with. This review illustrates the effective application of chemometrics protocols used to improve quantification techniques and the interpretation of raw data from complex samples.
View Article and Find Full Text PDFWater Sci Technol
February 2014
Drinking-water treatment sludge (DWTS) is a by-product generated during the production of drinking water where iron hydroxides are the main component of the sludge. The aim of the study presented here was to determine the effectiveness of using ferric sludge from two underground water treatment stations to remove orthophosphates from a model solution. The analyses were performed in static conditions.
View Article and Find Full Text PDF