Publications by authors named "Krzysztof M Zaremba"

Background: Colonic atresias in the Fibroblast growth factor receptor 2IIIb (Fgfr2IIIb) mouse model have been attributed to increased epithelial apoptosis and decreased epithelial proliferation at embryonic day (E) 10.5. We therefore hypothesized that these processes would colocalize to the distal colon where atresias occur (atretic precursor) and would be excluded or minimized from the proximal colon and small intestine.

View Article and Find Full Text PDF

Background: The mechanism of intestinal atresia formation remains undefined. Atresia in fibroblast growth factor receptor 2IIIb (Fgfr2IIIb(-/-)) mutant mouse embryos is preceded by endodermal apoptosis and involution of the surrounding mesoderm. We have observed that involution of the atretic segment is preceded by the downregulation of Sonic hedgehog (SHH) in the endoderm, which is a critical organizer of the intestinal mesoderm.

View Article and Find Full Text PDF

Background: Hprt-Cre doubles the prevalence of homozygous null embryos per litter versus heterozygous breedings without decreasing litter size. Resulting mutant embryos are genotypically and phenotypically equivalent between strategies. We set out to confirm the effectiveness of this approach with other alleles and hypothesized that it would increase efficiency in generating compound mutants.

View Article and Find Full Text PDF

Background: Homozygous null mutation of the fibroblast growth factor receptor 2IIIb (Fgfr2IIIb) gene in mice results in 42% of embryos developing duodenal atresias. Retinaldehyde dehydrogenase 2 (Raldh2, a gene critical for the generation of retinoic acid) is expressed in the mouse duodenum during the temporal window when duodenal atresias form. Raldh2 is critical for the normal development of the pancreatoduodenal region; therefore, we were interested in the effect of a Raldh2 mutation on duodenal atresia formation.

View Article and Find Full Text PDF

Purpose: The etiology of intestinal atresia remains elusive but has been ascribed to a number of possible events including in utero vascular accidents, failure of recanalization of the intestinal lumen, and mechanical compression. Another such event that has been postulated to be a cause in atresia formation is disruption in notochord development. This hypothesis arose from clinical observations of notochord abnormalities in patients with intestinal atresias as well as abnormal notochord development observed in a pharmacologic animal model of intestinal atresia.

View Article and Find Full Text PDF