In the present study, we used two popular radio communication SAW resonators as a base for gas sensors and tested their performance. Taking into account issues related to sensor sensitivity, the possibility of applying a sensor layer, the availability of devices, and other related issues, we selected two popular single-port resonators with center frequencies of 315 and 433 MHz (models R315 and R433, respectively) for testing purposes. Both resonators were equipped with a sensitive film of hexafluoroisopropanol-substituted polydimethylsiloxane, a material that selectively absorbs molecules with a high ability to form basic hydrogen bonds.
View Article and Find Full Text PDFThe latest trends in the field of the on-site detection of chemical warfare agents (CWAs) involve increasing the availability of point detectors to enhance the operational awareness of commanders and soldiers. Among the intensively developed concepts aimed at meeting these requirements, wearable detectors, gas analyzers as equipment for micro- and mini-class unmanned aerial vehicles (UAVs), and distributed sensor networks can be mentioned. One of the analytical techniques well suited for use in this field is surface acoustic wave sensors, which can be utilized to construct lightweight, inexpensive, and undemanding gas analyzers for detecting CWAs.
View Article and Find Full Text PDFSensors (Basel)
September 2023
A Love-type acoustic wave sensor (AT-cut quartz substrate, SiO guiding layer) with a center frequency of approximately 120 MHz was used to detect a simulant of pathogenic botulinum neurotoxin type A-recombinant of BoNT-A light chain-in liquid samples. The sensor was prepared by immobilizing monoclonal antibodies specific for botulinum neurotoxin via a thiol monolayer deposited on a gold substrate. Studies have shown that the sensor enables selective analyte detection within a few minutes.
View Article and Find Full Text PDFOn-site detection of chemical warfare agents (CWAs) can be performed by various analytical techniques. Devices using well-established techniques such as ion mobility spectrometry, flame photometry, infrared and Raman spectroscopy or mass spectrometry (usually combined with gas chromatography) are quite complex and expensive to purchase and operate. For this reason, other solutions based on analytical techniques well suited to portable devices are still being sought.
View Article and Find Full Text PDFOne of the most important methods of measuring the concentration of gaseous oxygen uses its paramagnetic properties, thanks to which oxygen molecules are drawn into the area of a strong magnetic field. This Review presents the current state of knowledge, achievements, and development prospects in the field of magnetic oxygen sensors using this phenomenon. We present the theoretical basis of the physical phenomena used in the paramagnetic oxygen sensors.
View Article and Find Full Text PDFOn-site detection and initial identification of chemical warfare agents (CWAs) remain difficult despite the many available devices designed for this type of analysis. Devices using well-established analytical techniques such as ion mobility spectrometry, gas chromatography coupled with mass spectrometry, or flame photometry, in addition to unquestionable advantages, also have some limitations (complexity, high unit cost, lack of selectivity). One of the emerging techniques of CWA detection is based on acoustic wave sensors, among which surface acoustic wave (SAW) devices and quartz crystal microbalances (QCM) are of particular importance.
View Article and Find Full Text PDFIn this work, the synthesis of a new polysiloxane, poly {dimethylsiloxane--[4-(2,3-difluoro-4-hydroxyphenoxy) butyl] methylsiloxane} (dubbed PMFOS), is presented. This polymer exhibits high hydrogen bond acidity and was designed to be used as a sensor layer in gas sensors. The description of the synthetic route of the PMFOS has been divided into two main stages: the synthesis of the functional substituent 4-(but-3-en-1-yloxy)-2,3-difluorophenol, and the post-polymerization functionalization of the polysiloxane chain (methylhydrosiloxane-dimethylsiloxane copolymer) via hydrosilylation.
View Article and Find Full Text PDFThe paper presents the results of inverse gas chromatographic (IGC) research on two novel polysiloxanes: poly{dimethylsiloxane-co -[4-(2,3-difluoro-4-hydroxyphenoxy)butyl]methylsiloxane} and poly{dimethylsiloxane-co -[4-(4-hydroxyphenoxy)butyl]methylsiloxane}, dubbed PMFOS and PMOS respectively, designed for use as chemosensitive coatings for acoustoelectronic sensors. These materials contain phenolic functional substituents that differ by the presence of fluorine atoms. The materials' solvation properties were identified by IGC with application of an LSER solvation model at temperatures ranging from 40 to 120 °C.
View Article and Find Full Text PDFBackground: Methicillin-resistant strains of Staphylococcus aureus (MRSA) are important etiological factors responsible for healthcare-associated infections. The aim of this study was to evaluate the epidemic and to discriminate all of the involved strains isolated at the Provincial Hospital in Gdańsk and, on this basis, perform an epidemiological investigation using the random amplification of polymorphic DNA PCR (RAPD) with the primer AP-7.
Material/methods: Two hundred and thirty-four isolates of Staphylococcus aureus were typed to evaluate a seven-year epidemic of MRSA at the hospital.