This paper investigates the relationship among interlayer exchange coupling (IEC), Dzyaloshinskii-Moriya interaction (DMI), and multilevel magnetization switching within a Co/Pt/Co heterostructure, where varying Pt thicknesses enable control over the coupling strength. Employing Brillouin Light Scattering to quantify the effective DMI, we explore its potential role in magnetization dynamics and multilevel magnetization switching. Experimental findings show four distinct resistance states under an external magnetic field and spin Hall effect related spin current.
View Article and Find Full Text PDFThe spin-orbit torque, a torque induced by a charge current flowing through the heavy-metal-conducting layer with strong spin-orbit interactions, provides an efficient way to control the magnetization direction in heavy-metal/ferromagnet nanostructures, required for applications in the emergent magnetic technologies like random access memories, high-frequency nano-oscillators, or bioinspired neuromorphic computations. We study the interface properties, magnetization dynamics, magnetostatic features, and spin-orbit interactions within the multilayer system Ti(2)/Co(1)/Pt(0-4)/Co(1)/MgO(2)/Ti(2) (thicknesses in nanometers) patterned by optical lithography on micrometer-sized bars. In the investigated devices, Pt is used as a source of the spin current and as a nonmagnetic spacer with variable thickness, which enables the magnitude of the interlayer ferromagnetic exchange coupling to be effectively tuned.
View Article and Find Full Text PDFWe present experimental data and their theoretical description on spin Hall magnetoresistance (SMR) in bilayers consisting of a heavy metal (H) coupled to in-plane magnetized ferromagnetic metal (F), and determine contributions to the magnetoresistance due to SMR and anisotropic magnetoresistance (AMR) in five different bilayer systems: [Formula: see text], [Formula: see text], [Formula: see text], W/Co, and Co/Pt. The devices used for experiments have different interfacial properties due to either amorphous or crystalline structures of constitutent layers. To determine magnetoresistance contributions and to allow for optimization, the AMR is explicitly included in the diffusion transport equations in the ferromagnets.
View Article and Find Full Text PDF