We numerically study the transport properties of a two-dimensional Fermi gas in a weakly and strongly interacting regimes, in the range of temperatures close to the transition to a superfluid phase. For that we excite sound waves in a fermionic mixture by using the phase imprinting technique, follow their evolution, and finally determine both their speed and attenuation. Our formalism, originated from a density-functional theory, incorporates thermal fluctuations via the grand canonical ensemble description and with the help of Metropolis algoritm.
View Article and Find Full Text PDFWe theoretically study the sound propagation in a two-dimensional weakly interacting uniform Bose gas. Using the classical fields approximation we analyze in detail the properties of density waves generated both in a weak and strong perturbation regimes. While in the former case density excitations can be described in terms of hydrodynamic or collisionless sound, the strong disturbance of the system results in a qualitatively different response.
View Article and Find Full Text PDFWe propose an experiment which proves the possibility of spinning gaseous media via dipolar interactions in the spirit of the famous Einstein-de Haas effect for ferromagnets. The main idea is to utilize resonances that we find in spinor condensates of alkali atoms while these systems are placed in an oscillating magnetic field. A significant transfer of angular momentum from spin to motional degrees of freedom observed on resonance is a spectacular manifestation of dipolar effects in spinor condensates.
View Article and Find Full Text PDFWe theoretically consider a spin polarized, optically trapped condensate of 87Rb atoms in F=1. We observe a transfer of atoms to other Zeeman states due to the dipolar interaction which couples the spin and the orbital degrees of freedom. Therefore the transferred atoms acquire an orbital angular momentum.
View Article and Find Full Text PDF