Publications by authors named "Krzysztof Ciesielski"

Purpose: Dynamic or 4D imaging of the thorax has many applications. Both prospective and retrospective respiratory gating and tracking techniques have been developed for 4D imaging via CT and MRI. For pediatric imaging, due to radiation concerns, MRI becomes the de facto modality of choice.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the relationship between specific gene polymorphisms (hOGG1 Ser326Cys and XRCC1 Arg194Trp) and the risk of ovarian cancer in Polish women, involving 720 cancer patients and 720 healthy controls.
  • Results indicated that the hOGG1 Cys allele significantly increases the risk of developing ovarian cancer, with a high odds ratio (OR 2.89).
  • The study also found that ovarian cancer grading correlates with these polymorphisms, particularly in G1 tumors, which showed increased frequencies of both hOGG1 Cys/Cys and XRCC1 Trp/Trp homozygotes.
View Article and Find Full Text PDF

Graph-cut algorithms have been extensively investigated for interactive binary segmentation, when the simultaneous delineation of multiple objects can save considerable user's time. We present an algorithm (named DRIFT) for 3D multiple object segmentation based on seed voxels and Differential Image Foresting Transforms (DIFTs) with relaxation. DRIFT stands behind efficient implementations of some state-of-the-art methods.

View Article and Find Full Text PDF

To make Quantitative Radiology (QR) a reality in radiological practice, computerized body-wide Automatic Anatomy Recognition (AAR) becomes essential. With the goal of building a general AAR system that is not tied to any specific organ system, body region, or image modality, this paper presents an AAR methodology for localizing and delineating all major organs in different body regions based on fuzzy modeling ideas and a tight integration of fuzzy models with an Iterative Relative Fuzzy Connectedness (IRFC) delineation algorithm. The methodology consists of five main steps: (a) gathering image data for both building models and testing the AAR algorithms from patient image sets existing in our health system; (b) formulating precise definitions of each body region and organ and delineating them following these definitions; (c) building hierarchical fuzzy anatomy models of organs for each body region; (d) recognizing and locating organs in given images by employing the hierarchical models; and (e) delineating the organs following the hierarchy.

View Article and Find Full Text PDF

We introduce an image segmentation algorithm, called GC(sum)(max), which combines, in novel manner, the strengths of two popular algorithms: Relative Fuzzy Connectedness (RFC) and (standard) Graph Cut (GC). We show, both theoretically and experimentally, that GC(sum)(max) preserves robustness of RFC with respect to the seed choice (thus, avoiding "shrinking problem" of GC), while keeping GC's stronger control over the problem of "leaking though poorly defined boundary segments." The analysis of GC(sum)(max) is greatly facilitated by our recent theoretical results that RFC can be described within the framework of Generalized GC (GGC) segmentation algorithms.

View Article and Find Full Text PDF

Purpose: Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets.

View Article and Find Full Text PDF

In the current vast image segmentation literature, there seems to be considerable redundancy among algorithms, while there is a serious lack of methods that would allow their theoretical comparison to establish their similarity, equivalence, or distinctness. In this paper, we make an attempt to fill this gap. To accomplish this goal, we argue that: (1) every digital segmentation algorithm [Formula: see text] should have a well defined continuous counterpart [Formula: see text], referred to as its model, which constitutes an asymptotic of [Formula: see text] when image resolution goes to infinity; (2) the equality of two such models [Formula: see text] and [Formula: see text] establishes a theoretical (asymptotic) equivalence of their digital counterparts [Formula: see text] and [Formula: see text].

View Article and Find Full Text PDF

In this paper we present a new theory and an algorithm for image segmentation based on a strength of connectedness between every pair of image elements. The object definition used in the segmentation algorithm utilizes the notion of iterative relative fuzzy connectedness, IRFC. In previously published research, the IRFC theory was developed only for the case when the segmentation was involved with just two segments, an object and a background, and each of the segments was indicated by a single seed.

View Article and Find Full Text PDF

Thermal inactivation is suspected to be a limiting factor for use of glucoamylase in starch saccharification at elevated temperatures. Thus, inactivation of the enzyme has been studied in the presence of reagents (enzyme, substrate and product in wide range of concentrations, and moderate stirring). The influence of substrate and glucose as stability modulators showed the complexity of the studied system.

View Article and Find Full Text PDF