Publications by authors named "Krystyna Tatarkiewicz"

The design, synthesis and pharmacology of novel long-acting exenatide analogs for the treatment of metabolic diseases are described. These molecules display enhanced pharmacokinetic profile and potent glucoregulatory and weight lowering actions compared to native exenatide. [Leu(14)]exenatide-ABD is an 88 residue peptide amide incorporating an Albumin Binding Domain (ABD) scaffold.

View Article and Find Full Text PDF

Glucagon-like peptide 1 receptors (GLP-1R) are expressed in multiple tissues and activation results in metabolic benefits including enhanced insulin secretion, slowed gastric emptying, suppressed food intake, and improved hepatic steatosis. Limited and inconclusive knowledge exists regarding whether the effects of chronic exposure to a GLP-1R agonist are solely mediated via this receptor. Therefore, we examined 3-mo dosing of exenatide in mice lacking a functional GLP-1R (Glp1r(-/-)).

View Article and Find Full Text PDF

Combination therapy is being increasingly used as a treatment paradigm for metabolic diseases such as diabetes and obesity. In the peptide therapeutics realm, recent work has highlighted the therapeutic potential of chimeric peptides that act on two distinct receptors, thereby harnessing parallel complementary mechanisms to induce additive or synergistic benefit compared to monotherapy. Here, we extend this hypothesis by linking a known anti-diabetic peptide with an anti-obesity peptide into a novel peptide hybrid, which we termed a phybrid.

View Article and Find Full Text PDF

The risk of developing pancreatitis is elevated in type 2 diabetes and obesity. Cases of pancreatitis have been reported in type 2 diabetes patients treated with GLP-1 (GLP-1R) receptor agonists. To examine whether the GLP-1R agonist exenatide potentially induces or modulates pancreatitis, the effect of exenatide was evaluated in normal or diabetic rodents.

View Article and Find Full Text PDF

Transgenic expression of gastrin and EGF receptor ligands stimulates islet neogenesis in adult mice, significantly increasing islet mass. The present study aimed to determine whether pharmacological treatment with gastrin and EGF can significantly stimulate beta-cell regeneration in chronic, severe insulin-dependent diabetes. Diabetes was induced by intravenous streptozotocin, resulting in >95% beta cell destruction.

View Article and Find Full Text PDF

To learn more about the potential of neonatal porcine pancreatic duct and islet cells for xenotransplantation, the development of these cells when cultured as monolayers was evaluated. Immunostaining for islet hormones and cytokeratin-7 revealed that day eight monolayers consisted of approximately 70% duct cells and less than 10% beta cells. Using Ki-67 immunostaining as a proliferation marker, the fraction of beta cells in the cell cycle was shown to decrease from 20% at day three to 10% at day eight, and for duct cells from 36 to 19%.

View Article and Find Full Text PDF