Publications by authors named "Krystyna Kijewska"

Fabrication of multifunctional smart vehicles for drug delivery is a fascinating challenge of multidisciplinary research at the crossroads of materials science, physics and biology. We demonstrate a prototypical microcapsule system that is capable of encapsulating hydrophobic molecules and at the same time reveals magnetic properties. The microcapsules are prepared using a templated synthesis approach where the molecules to be encapsulated (Nile Red) are present in the organic droplets that are suspended in the polymerization solution which also contains magnetic nanoparticles.

View Article and Find Full Text PDF

We report on the use of molecular diffusional motion over a range of length scales to characterize compositional heterogeneity in monolayer structures. This work focuses on the diffusional motion of perylene in two types of films supported on functionalized silica surfaces: single-component (stearic acid) and two-component (hydrocarbon/fluorocarbon) films. Langmuir-Blodgett (LB) monolayers were deposited directly on silica or were bound to surface-modified silica by means of metal ion complexation.

View Article and Find Full Text PDF

Pyrene, a fluorescent dye, was incorporated into polystyrene particles coated with polypyrrole. The incorporation was achieved by treating the polypyrrole/polystyrene (PPy/PS) beads in a tetrahydrofuran (THF) solution of the pyrene fluorophore followed by rinsing with methanol. The polystyrene cores of the beads swell in THF, allowing penetration of pyrene molecules into the polystyrene structure.

View Article and Find Full Text PDF

Many phosphorylated nucleoside derivatives have therapeutic potential, but their application is limited by problems with membrane permeability and with intracellular delivery. Here, we prepared polypyrrole microvessel structures modified with superparamagnetic nanoparticles for use as potential carriers of nucleotides. The microvessels were prepared via the photochemical polymerization of the monomer onto the surface of aqueous ferrofluidic droplets.

View Article and Find Full Text PDF

In the need of development of versatile and flexible platforms for sensing, nanostructured particles are one of the systems of choice. Additionally, the state-of-the-art, controlled surface modifications of these structures offer broad possibilities of using such systems for diagnostics and therapy, often referred to as thera(g)nostics. In this brief review we will focus on the synthesis and surface modifications of solid-core magnetic nanostructures and polymeric capsules containing nanoferrites modified with anti-cancer drug--doxorubicin, designed for magnetic field-driven drug delivery for cancer therapy.

View Article and Find Full Text PDF

We report on the preparation of water-filled polymer microvessels through the photopolymerization of pyrrole in a water/chloroform emulsion. The resulting structures were characterized by complementary spectroscopic and microscopic techniques, including Raman spectroscopy, XPS, SEM, and TEM. The encapsulation of fluorescent, magnetic, and ionic species within the microvessels has been demonstrated.

View Article and Find Full Text PDF

The encapsulation of guest molecules within polymeric hollow nano- or microscale structures is a rapidly developing field of interdisciplinary research due to a variety of applications ranging from drug delivery and sensor fabrication to nanoscale synthesis and bioinspired mineralization. We report on the encapsulation of pyrene within three-dimensional polypyrrole microvessels synthesized by precipitation polymerization of pyrrole onto toluene droplets that contain pyrene. Steady state and time-resolved fluorescence measurements show that the optical response and dynamics of encapsulated pyrene is significantly different from that in the free solution, likely due to interactions with oligomeric species generated during the polymerization process that partition into the organic core of the microvessel.

View Article and Find Full Text PDF