We investigate the electronic structure of aromatic radical anions in the solution phase employing a combination of liquid-jet (LJ) photoelectron (PE) spectroscopy measurements and electronic structure calculations. By using recently developed protocols, we accurately determine the vertical ionization energies of valence electrons of both the solvent and the solute molecules. In particular, we first characterize the pure solvent of tetrahydrofuran (THF) by LJ-PE measurements in conjunction with ab initio molecular dynamics simulations and GW calculations.
View Article and Find Full Text PDFJ Chem Theory Comput
October 2023
Although machine learning potentials have recently had a substantial impact on molecular simulations, the construction of a robust training set can still become a limiting factor, especially due to the requirement of a reference ab initio simulation that covers all the relevant geometries of the system. Recognizing that this can be prohibitive for certain systems, we develop the method of transition tube sampling that mitigates the computational cost of training set and model generation. In this approach, we generate classical or quantum thermal geometries around a transition path describing a conformational change or a chemical reaction using only a sparse set of local normal mode expansions along this path and select from these geometries by an active learning protocol.
View Article and Find Full Text PDFThe benzene radical anion is a molecular ion pertinent to several organic reactions, including the Birch reduction of benzene in liquid ammonia. The species exhibits a dynamic Jahn-Teller effect due to its open-shell nature and undergoes pseudorotation of its geometry. Here, we characterize the complex electronic structure of this condensed-phase system based on ab initio molecular dynamics simulations and GW calculations of the benzene radical anion solvated in liquid ammonia.
View Article and Find Full Text PDFWe report valence band photoelectron spectroscopy measurements of gas-phase and liquid-phase benzene as well as those of benzene dissolved in liquid ammonia, complemented by electronic structure calculations. The origins of the sizable gas-to-liquid-phase shifts in electron binding energies deduced from the benzene valence band spectral features are quantitatively characterized in terms of the Born-Haber solvation model. This model also allows to rationalize the observation of almost identical shifts in liquid ammonia and benzene despite the fact that the former solvent is polar while the latter is not.
View Article and Find Full Text PDFThe benzene radical anion, well-known in organic chemistry as the first intermediate in the Birch reduction of benzene in liquid ammonia, exhibits intriguing properties from the point of view of quantum chemistry. Notably, it has the character of a metastable shape resonance in the gas phase, while measurements in solution find it to be experimentally detectable and stable. In this light, our previous calculations performed in bulk liquid ammonia explicitly reveal that solvation leads to stabilization.
View Article and Find Full Text PDFIt is well known in the field of machine learning that committee models improve accuracy, provide generalization error estimates, and enable active learning strategies. In this work, we adapt these concepts to interatomic potentials based on artificial neural networks. Instead of a single model, multiple models that share the same atomic environment descriptors yield an average that outperforms its individual members as well as a measure of the generalization error in the form of the committee disagreement.
View Article and Find Full Text PDFThe benzene radical anion is an important intermediate in the Birch reduction of benzene by solvated electrons in liquid ammonia. Beyond organic chemistry, it is an intriguing subject of spectroscopic and theoretical studies due to its rich structural and dynamical behavior. In the gas phase, the species appears as a metastable shape resonance, while in the condensed phase, it remains stable.
View Article and Find Full Text PDFExperimental studies of the electronic structure of excess electrons in liquids-archetypal quantum solutes-have been largely restricted to very dilute electron concentrations. We overcame this limitation by applying soft x-ray photoelectron spectroscopy to characterize excess electrons originating from steadily increasing amounts of alkali metals dissolved in refrigerated liquid ammonia microjets. As concentration rises, a narrow peak at ~2 electron volts, corresponding to vertical photodetachment of localized solvated electrons and dielectrons, transforms continuously into a band with a sharp Fermi edge accompanied by a plasmon peak, characteristic of delocalized metallic electrons.
View Article and Find Full Text PDFPhotoelectron spectroscopy of microjets expanded into vacuum allows access to orbital energies for solute or solvent molecules in the liquid phase. Microjets of water, acetonitrile and alcohols have previously been studied; however, it has been unclear whether jets of low temperature molecular solvents could be realized. Here we demonstrate a stable 20 μm jet of liquid ammonia (-60 °C) in a vacuum, which we use to record both valence and core-level band photoelectron spectra using soft X-ray synchrotron radiation.
View Article and Find Full Text PDFThe oligomeric state of the storage form of human insulin in the pancreas, which may be affected by several endogenous components of β-cell storage granules such as arginine, is not known. Here, the effect of arginine on insulin oligomerization is investigated independently by protein crystallography, molecular dynamics simulations, and capillary electrophoresis. The combined results point to a strong effect of ionic strength on insulin assembly.
View Article and Find Full Text PDF