In this paper, a novel approach to the mixed Gaussian and impulsive noise reduction in color images is proposed. The described denoising framework is based on the Non-Local Means (NLM) technique, which proved to efficiently suppress only the Gaussian noise. To circumvent the incapacity of the NLM filter to cope with impulsive distortions, a robust similarity measure between image patches, which is insensitive to the impact of impulsive corruption, was elaborated.
View Article and Find Full Text PDFDeep neural networks (DNNs) have achieved outstanding results in domains such as image processing, computer vision, natural language processing and bioinformatics. In recent years, many methods have been proposed that can provide a visual explanation of decision made by such classifiers. Saliency maps are probably the most popular.
View Article and Find Full Text PDFThe substantial improvement in the efficiency of switching filters, intended for the removal of impulsive noise within color images is described. Numerous noisy pixel detection and replacement techniques are evaluated, where the filtering performance for color images and subsequent results are assessed using statistical reasoning. Denoising efficiency for the applied detection and interpolation techniques are assessed when the location of corrupted pixels are identified by noisy pixel detection algorithms and also in the scenario when they are already known.
View Article and Find Full Text PDFNoise reduction is one of the most important and still active research topics in low-level image processing due to its high impact on object detection and scene understanding for computer vision systems. Recently, we observed a substantially increased interest in the application of deep learning algorithms. Many computer vision systems use them, due to their impressive capability of feature extraction and classification.
View Article and Find Full Text PDFWe propose a novel filtering technique capable of reducing the multiplicative noise in ultrasound images that is an extension of the denoising algorithms based on the concept of digital paths. In this approach, the filter weights are calculated taking into account the similarity between pixel intensities that belongs to the local neighborhood of the processed pixel, which is called a path. The output of the filter is estimated as the weighted average of pixels connected by the paths.
View Article and Find Full Text PDF