The population structure of benthic marine organisms is of central relevance to the conservation and management of these often threatened species, as well as to the accurate understanding of their ecological and evolutionary dynamics. A growing body of evidence suggests that marine populations can be structured over short distances despite theoretically high dispersal potential. Yet the proposed mechanisms governing this structure vary, and existing empirical population genetic evidence is of insufficient taxonomic and geographic scope to allow for strong general inferences.
View Article and Find Full Text PDFPredicted increases in disease with climate warming highlight the need for effective management strategies to mitigate disease effects in coral communities. We examined the role of marine protected areas (MPAs) in reducing disease in corals and the hypothesis that the composition of fish communities can influence coral health, by comparing disease prevalence between MPA and non-protected (control) reefs in Palau. Overall, the prevalence of diseases pooled, as well as the prevalence of skeletal eroding band (SEB), brown band disease (BrB) and growth anomalies (GAs) individually in major disease hosts (families Acroporidae and Poritidae), were not significantly reduced within MPAs.
View Article and Find Full Text PDFVectors play a critical role in the ecology of infectious disease by facilitating between host transmission, emphasizing the multi-species nature of disease. Corals are suffering an onslaught of infectious diseases, yet we know little about the role of vector species in the ecology of these epizootics. The infection of octocorals by the fungus Aspergillus sydowii is a widespread Caribbean coral disease.
View Article and Find Full Text PDFThe ascomycete Aspergillus sydowii is associated with a serious epizootic of sea fan corals in the Caribbean. Corals are rich in the compatible solute, dimethylsulfoniopropionate (DMSP), produced by their symbionts, the dinoflagellate Symbiodinium. As other Aspergillus species can catabolize DMSP, liberating dimethyl sulfide (DMS) in the process, we tested A.
View Article and Find Full Text PDFReef-building corals are comprised of close associations between the coral animal, symbiotic zooxanthellae, and a diversity of associated microbes (including Bacteria, Archaea and Fungi). Together, these comprise the coral holobiont - a paradigm that emphasizes the potential contributions of each component to the overall function and health of the coral. Little is known about the ecology of the coral-associated microbial community and its hypothesized role in coral health.
View Article and Find Full Text PDFHere we report primers for 10 microsatellite loci from the Caribbean sea fan coral, Gorgonia ventalina. Primers were tested on 237 genomic DNA extracts taken directly from tissue samples of G. ventalina.
View Article and Find Full Text PDFRecent outbreaks of new diseases in many ecosystems are caused by novel pathogens, impaired host immunity, or changing environmental conditions. Identifying the source of emergent pathogens is critical for mitigating the impacts of diseases, and understanding the cause of their recent appearances. One ecosystem suffering outbreaks of disease in the past decades is coral reefs, where pathogens such as the fungus Aspergillus sydowii have caused catastrophic population declines in their hosts.
View Article and Find Full Text PDFHere we report on nine microsatellite loci designed for Aspergillus sydowii, a widely distributed soil saprobe that is also the pathogenic agent of aspergillosis in Caribbean sea fan corals. Primers were tested on 20 A. sydowii isolates from the Caribbean, 17 from diseased sea fans and three from environmental sources.
View Article and Find Full Text PDF