Publications by authors named "Kryger G"

Improved techniques in microvascular surgery over the last several decades have led to the increased use of free tissue transfers as a mode of reconstructing difficult problems with a high success rate. However, undiagnosed thrombophilias have been associated with microsurgery free flap failures. We present a case of successful free tissue transfer in a patient with lupus anticoagulant and review the literature.

View Article and Find Full Text PDF

Background: Alar retraction deformities occasionally require significant soft-tissue release and relatively large cartilage grafts. In addition, correction of the short nose by only lengthening the septum can result in potential postoperative alar retraction. Consequently, both types of cases, true and potential alar retraction (in short noses), would benefit from a technique that lengthens the sidewall of the nose.

View Article and Find Full Text PDF

Purpose: Tissue-engineered tendon grafts will meet an important clinical need. To engineer tendons, we used acellularized allogeneic tendon as scaffold material. To determine the ideal cell type to seed the scaffolds, we studied in vitro characteristics of epitenon tenocytes, tendon sheath fibroblasts, bone marrow-derived mesenchymal stem cells (BMSCs), and adipoderived mesenchymal stem cells (ASCs).

View Article and Find Full Text PDF

Aspartate-beta-semialdehyde dehydrogenase (ASADH) lies at the first branch point in the biosynthetic pathway through which bacteria, fungi, and the higher plants synthesize amino acids, including lysine and methionine and the cell wall component diaminopimelate from aspartate. Blocks in this biosynthetic pathway, which is absent in mammals, are lethal, and inhibitors of ASADH may therefore serve as useful antibacterial, fungicidal, or herbicidal agents. We have determined the structure of ASADH from Escherichia coli by crystallography in the presence of its coenzyme and a substrate analogue that acts as a covalent inhibitor.

View Article and Find Full Text PDF

Chimeras of tacrine and m-(N,N,N-Trimethylammonio)trifluoroacetophenone (1) were designed as novel, reversible inhibitors of acetylcholinesterase. On the basis of the X-ray structure of the apoenzyme, a molecular modeling study determined the favored attachment positions on the 4-aminoquinoline ring (position 3 and the 4-amino nitrogen) and the favored lengths of a polymethylene link between the two moieties (respectively 5-6 and 4-5 sp(3) atoms). Seven compounds matching these criteria were synthesized, and their inhibitory potencies were determined to be in the low nanomolar range.

View Article and Find Full Text PDF

Nerve growth factor (NGF) is thought to play a role in the pathogenesis of neuroma formation as well as in the development of neuropathic pain. In this study we attempted to antagonize NGF by using trkA-IgG, an inhibitor of NGF, consisting of the NGF receptor linked to an immunoglobulin. It was delivered by an implanted osmotic pump directly to the site of a sciatic nerve transection in 16 rats for 30 days.

View Article and Find Full Text PDF

The solvent behaviour of flash-cooled protein crystals was studied in the range 100--180 K by X-ray diffraction. If the solvent is within large channels it crystallizes at 155 K, as identified by a sharp change in the increase of unit-cell volume upon temperature increase. In contrast, if a similar amount of solvent is confined to narrow channels and/or individual cavities it does not crystallize in the studied temperature range.

View Article and Find Full Text PDF

Structures of recombinant wild-type human acetylcholinesterase and of its E202Q mutant as complexes with fasciculin-II, a 'three-finger' polypeptide toxin purified from the venom of the eastern green mamba (Dendroaspis angusticeps), are reported. The structure of the complex of the wild-type enzyme was solved to 2.8 A resolution by molecular replacement starting from the structure of the complex of Torpedo californica acetylcholinesterase with fasciculin-II and verified by starting from a similar complex with mouse acetylcholinesterase.

View Article and Find Full Text PDF

We have crystallized Drosophila melanogaster acetylcholinesterase and solved the structure of the native enzyme and of its complexes with two potent reversible inhibitors, 1,2,3,4-tetrahydro-N-(phenylmethyl)-9-acridinamine and 1,2,3,4-tetrahydro-N-(3-iodophenyl-methyl)-9-acridinamine--all three at 2.7 A resolution. The refined structure of D.

View Article and Find Full Text PDF

Buried water molecules and the water molecules in the active-site gorge are analyzed for five crystal structures of acetylcholinesterase from Torpedo californica in the resolution range 2.2-2.5 A (native enzyme, and four inhibitor complexes).

View Article and Find Full Text PDF

Radiation damage is an inherent problem in x-ray crystallography. It usually is presumed to be nonspecific and manifested as a gradual decay in the overall quality of data obtained for a given crystal as data collection proceeds. Based on third-generation synchrotron x-ray data, collected at cryogenic temperatures, we show for the enzymes Torpedo californica acetylcholinesterase and hen egg white lysozyme that synchrotron radiation also can cause highly specific damage.

View Article and Find Full Text PDF

(-)-Galanthamine (GAL), an alkaloid from the flower, the common snowdrop (Galanthus nivalis), shows anticholinesterase activity. This property has made GAL the target of research as to its effectiveness in the treatment of Alzheimer's disease. We have solved the X-ray crystal structure of GAL bound in the active site of Torpedo californica acetylcholinesterase (TcAChE) to 2.

View Article and Find Full Text PDF

Aspartate beta-semialdehyde dehydrogenase (ASADH) lies at the first branch point in an essential aspartic biosynthetic pathway found in bacteria, fungi and the higher plants. Mutations in the asd gene encoding for ASADH that produce an inactive enzyme are lethal, which suggests that ASADH may be an effective target for antibacterial, herbicidal and fungicidal agents. We have solved the crystal structure of the Escherichia coli enzyme to 2.

View Article and Find Full Text PDF

Background: Several cholinesterase inhibitors are either being utilized for symptomatic treatment of Alzheimer's disease or are in advanced clinical trials. E2020, marketed as Aricept, is a member of a large family of N-benzylpiperidine-based acetylcholinesterase (AChE) inhibitors developed, synthesized and evaluated by the Eisai Company in Japan. These inhibitors were designed on the basis of QSAR studies, prior to elucidation of the three-dimensional structure of Torpedo californica AChE (TcAChE).

View Article and Find Full Text PDF

Organophosphorus acid anhydride (OP) nerve agents are potent inhibitors which rapidly phosphonylate acetylcholinesterase (AChE) and then may undergo an internal dealkylation reaction (called "aging") to produce an OP-enzyme conjugate that cannot be reactivated. To understand the basis for irreversible inhibition, we solved the structures of aged conjugates obtained by reaction of Torpedo californica AChE (TcAChE) with diisopropylphosphorofluoridate (DFP), O-isopropylmethylphosponofluoridate (sarin), or O-pinacolylmethylphosphonofluoridate (soman) by X-ray crystallography to 2.3, 2.

View Article and Find Full Text PDF

The 3D structure of a complex of the anti-Alzheimer drug, E2020, also known as Aricept, with Torpedo californica acetylcholinesterase is reported. The X-ray structure, at 2.5 A resolution, shows that the elongated E2020 molecule spans the entire length of the active-site gorge of the enzyme.

View Article and Find Full Text PDF

The basis of protein stability has been investigated by the structural comparison of themophilic enzymes with their mesophilic counterparts. A number of characteristics have been found that can contribute to the stabilization of thermophilic proteins, but no one is uniquely capable of imparting thermostability. The crystal structure of 3-isopropylmalate dehydrogenase (IPMDH) from the mesophiles Escherichia coli and Salmonella typhimurium have been determined by the method of molecular replacement using the known structure of the homologous Thermus thermophilus enzyme.

View Article and Find Full Text PDF

The amino acid (aa) sequence of the leuB gene product of Salmonella typhimurium, 3-isopropylmalate dehydrogenase (IPMDH), has been revised using electron density maps from X-ray structure determination. The nucleotide (nt) sequence of both strands of leuB has been redetermined to confirm the crystallographic findings. It does not agree with the previously reported S.

View Article and Find Full Text PDF

The chemotactic cytokine RANTES (Regulated on Activation, Normal T-cell Expressed and Secreted) is a potent chemoattractant and activator of a number of leukocytes, with a molecular mass of 8 kDa. Crystals of this protein have been grown from 100 mM sodium acetate buffer (pH 4.6) containing 200 mM magnesium acetate, with 20% (w/v) PEG 4000 and 6% (v/v) glycerol.

View Article and Find Full Text PDF

Aspartate-beta-semialdehyde dehydrogenase catalyzes the NADPH-mediated reductive dephosphorylation of beta-aspartylphosphate at a branch point in the biosynthesis of several amino acids. The enzyme from Escherichia coli has been crystallized by the vapor diffusion method from Tris buffer (pH 8.5) using polyethylene glycol 4000 as a precipitant.

View Article and Find Full Text PDF