The macromolecular architectures, namely mannose-based methacrylate acetyl-mannopyranoside and PEG block copolymers [AB type copolymer [PEG-b-PMAM], poly(ethyleneglycol)-b-poly(methacryl-2,3,4,6-tetra-O-acetyl-D-mannopyranoside) and ABA type copolymer [PMAM-b-PEG-b-PMAM], poly(methacryl-2,3,4,6-tetra-O-acetyl-D-mannopyranoside)-b-poly(ethyleneglycol)-b-poly(methacryl-2,3,4,6-tetra-O-acetyl-D-mannopyranoside)] were synthesized by atom transfer radical polymerization (ATRP) method that were deacetylated to generate the corresponding water-soluble and biocompatible glycopolymer macromolecules. The molecular weight of acetyl and deacetylate macromolecules was in the range of 7083-9499 and 4659-6026, as determined by GPC and proton NMR spectra. The 5 % decomposition temperatures for acetylated methacrylate macromolecules (218-299 °C) were higher than the corresponding water-soluble macromolecules (204-248 °C).
View Article and Find Full Text PDF