Publications by authors named "Krushna Chandra Hembram"

Cancer stem cells (CSCs) have emerged as prime players in the intricate landscape of cancer development, progression, and resistance to traditional treatments. These unique cellular subpopulations own the remarkable capability of self-renewal and differentiation, giving rise to the diverse cellular makeup of tumors and fostering their recurrence following conventional therapies. In the quest for developing more effective cancer therapeutics, the focus has now shifted toward targeting the signaling pathways that govern CSCs behavior.

View Article and Find Full Text PDF

Tumor associated macrophages in the tumor microenvironment secrete multiple cytokines, which regulate cancer cells growth and invasiveness. We systematically studied the role of cytokines in the induction of cancer stem like cells (CSCs) in oral cancer cells niche and evaluated the mechanism of Resveratrol nanoparticle (Res-Nano) mediated-reduction of CSCs properties in cells. A highly M1-like macrophages-enriched conditioned medium (CM) was generated by treating fixed doses of PMA and LPS in THP-1 cells alone as well as co-cultured of H-357 plus THP-1 cells.

View Article and Find Full Text PDF

Concurrent use of DNA damaging agents with PARP inhibitors contribute to the effectiveness of the anticancer therapy. But there is a dearth of reports on the antiangiogenic effects of PARP inhibitors and the suppression of angiogenesis by this drug combination is not yet reported. For the successful development of cancer therapeutics, anti-cancer drugs ought to have anti-angiogenic potentiality along with their DNA damaging abilities.

View Article and Find Full Text PDF

The presence of cancer stem cells (CSCs) in the tumor microenvironment is responsible for the development of chemoresistance and recurrence of cancer. Our previous investigation revealed the anticancer mechanism of quinacrine-based silver and gold hybrid nanoparticles (QAgNP and QAuNP) in oral cancer cells, but to avoid cancer recurrence, it is important to study the effect of these nanoparticles (NPs) on CSCs. Here, we developed an CSCs model using SCC-9 oral cancer cells and validated via FACS analysis.

View Article and Find Full Text PDF

Although Olaparib (Ola, a PARP-inhibitor), in combination with other chemotherapeutic agents, was clinically approved to treat prostate cancer, but cytotoxicity, off-target effects of DNA damaging agents limit its applications in clinic. To improve the anti-cancer activity and to study the detailed mechanism of anti-cancer action, here we have used bioactive compound curcumin (Cur) in combination with Ola. Incubation of Ola in Cur pre-treated cells synergistically increased the death of oral cancer cells at much lower concentrations than individual optimum dose and inhibited the topoisomerase activity.

View Article and Find Full Text PDF

Using oral cancer cells ( in vitro) and in vivo xenograft mice model, we have systematically studied the detailed mechanism of anticancer activity of quinacrine-based hybrid silver (QAgNP) and gold (QAuNP) nanoparticles (NPs) and compared their efficacies. Both the NPs showed characteristic anti-cell proliferation profile in various cancer cells with minimally affecting the normal nontransformed breast epithelial MCF-10A cells. The IC values of QAuNP in various cancer cells were less compared to QAgNP and also found to be the lowest (0.

View Article and Find Full Text PDF

Context: Polymers have been largely explored for the preparation of nanoparticles due to ease of preparation and modification, large gene/drug loading capacity, and biocompatibility. Various methods have been adapted for the preparation and characterization of chitosan nanoparticles.

Objective: Focus on the different methods of preparation and characterization of chitosan nanoparticles.

View Article and Find Full Text PDF