Electron transfer plays a crucial role in living systems, including the generation of reactive oxygen species (ROS). Oxygen acts as the terminal electron acceptor in the respiratory chains of aerobic organisms as well as in some photoinduced processes followed by the formation of ROS. This is why the participation of exogenous antioxidants in electron transfer processes in living systems is of particular interest.
View Article and Find Full Text PDFOptical isomers of short peptide Lysine-Tryptophan-Lysine (Lys-{L/D-Trp}-Lys) and Lys-Trp-Lys with an acetate counter-ion were used to study photoinduced intramolecular and intermolecular processes of interest in photobiology. A comparison of L- and D-amino acid reactivity is also the focus of scientists' attention in various specialties because today, the presence of amyloid proteins with D-amino acids in the human brain is considered one of the leading causes of Alzheimer's disease. Since aggregated amyloids, mainly Aβ42, are highly disordered peptides that cannot be studied with traditional NMR and X-ray techniques, it is trending to explore the reasons for differences between L- and D-amino acids using short peptides, as in our article.
View Article and Find Full Text PDFBackground: Nurses spend part of their working time on non-nursing tasks. Unnecessary walking distances and the assumption of service activities and other non-care-related tasks take up a lot of space, which reduces the time for direct patient care and demonstrably increases the dissatisfaction of the persons involved. The REsPonSe project aims to relieve nursing staff by using a smartphone app for communication in combination with an autonomous service robot to reduce walking distances and service activities.
View Article and Find Full Text PDFElectron transfer plays a crucial role in ROS generation in living systems. Molecular oxygen acts as the terminal electron acceptor in the respiratory chains of aerobic organisms. Two main mechanisms of antioxidant defense by exogenous antioxidants are usually considered.
View Article and Find Full Text PDFMitochondria are multifunctional organelles that not only produce energy for the cell, but are also important for cell signalling, apoptosis and many biosynthetic pathways. In most cell types, they form highly dynamic networks that are constantly remodelled through fission and fusion events, repositioned by motor-dependent transport and degraded when they become dysfunctional. Motor proteins and their tracks are key regulators of mitochondrial homeostasis, and in this Review, we discuss the diverse functions of the three classes of motor proteins associated with mitochondria - the actin-based myosins, as well as the microtubule-based kinesins and dynein.
View Article and Find Full Text PDFOptineurin (OPTN) is a multifunctional protein involved in autophagy and secretion, as well as nuclear factor κB (NF-κB) and IRF3 signalling, and mutations are associated with several human diseases. Here, we show that, in response to viral RNA, OPTN translocates to foci in the perinuclear region, where it negatively regulates NF-κB and IRF3 signalling pathways and downstream pro-inflammatory cytokine secretion. These OPTN foci consist of a tight cluster of small membrane vesicles, which are positive for ATG9A.
View Article and Find Full Text PDF(S/R)-Ketoprofen (KP) is considered to be the strongest photosensitizer among nonsteroidal anti-inflammatory drugs. The photosensitizing reactions are caused by a substituted benzophenone chromophore. It produces various toxic effects through the formation of active paramagnetic intermediates and photoproducts able to attack biological substrates.
View Article and Find Full Text PDFMitochondrial homeostasis is maintained by removing dysfunctional, ubiquitinated mitochondria from the network via PRKN-dependent mitophagy. MYO6, a unique myosin that moves towards the minus ends of actin filaments, forms a complex with PRKN and is selectively recruited to damaged mitochondria by binding to ubiquitin. On the mitochondrial surface, this myosin motor initiates the assembly of F-actin cages, which serve as a quality control mechanism to isolate dysfunctional mitochondria thereby preventing their refusion with neighboring populations.
View Article and Find Full Text PDFMitochondrial quality control is essential to maintain cellular homeostasis and is achieved by removing damaged, ubiquitinated mitochondria via Parkin-mediated mitophagy. Here, we demonstrate that MYO6 (myosin VI), a unique myosin that moves toward the minus end of actin filaments, forms a complex with Parkin and is selectively recruited to damaged mitochondria via its ubiquitin-binding domain. This myosin motor initiates the assembly of F-actin cages to encapsulate damaged mitochondria by forming a physical barrier that prevents refusion with neighboring populations.
View Article and Find Full Text PDFMyosin motor proteins working together with the actin cytoskeleton drive a wide range of cellular processes. In this review, we focus on their roles in autophagy - the pathway the cell uses to ensure homeostasis by targeting pathogens, misfolded proteins and damaged organelles for degradation. The actin cytoskeleton regulated by a host of nucleating, anchoring and stabilizing proteins provides the filament network for the delivery of essential membrane vesicles from different cellular compartments to the autophagosome.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2016
Photoinduced processes with partial (exciplex) and full charge transfer in donor-acceptor systems are of interest because they are frequently used for modeling drug-protein binding. Low field photo-CIDNP (chemically induced dynamic nuclear polarization) for these processes in dyads, including the drug, (S)- and (R)-naproxen and (S)-N-methyl pyrrolidine in solutions with strong and weak permittivity have been measured. The dramatic influence of solvent permittivity on the field dependence of the N-methyl pyrrolidine (1)H CIDNP effects has been found.
View Article and Find Full Text PDFHuntingtin is a large membrane-associated scaffolding protein that associates with endocytic and exocytic vesicles and modulates their trafficking along cytoskeletal tracks. Although the progression of Huntington's disease is linked to toxic accumulation of mutant huntingtin protein, loss of wild-type huntingtin function might also contribute to neuronal cell death, but its precise function is not well understood. Therefore, we investigated the molecular role of huntingtin in exocytosis and observed that huntingtin knockdown in HeLa cells causes a delay in endoplasmic reticulum (ER)-to-Golgi transport and a reduction in the number of cargo vesicles leaving the trans-Golgi network.
View Article and Find Full Text PDFFor the majority of patients with type 1 diabetes intensive insulin therapy is effective and safe for maintaining glycemia and minimizing diabetes-associated complications. However, a rare number of patients show highly labile metabolic control and experience repeated and unpredictable hypoglycemic episodes. Such condition is often caused by defective counterregulatory mechanisms and autonomous neuropathy.
View Article and Find Full Text PDFX-irradiation of alkane solutions of N,N-dimethylaniline with various organic luminophores produces characteristic emission bands ascribed to the corresponding exciplexes. In contrast to optical generation, which requires diffusion-controlled quenching of excited states, an additional channel of exciplex formation via irreversible recombination of radical ion pairs is operative here, which produces exciplexes in solution with high efficiency even for p-terphenyl and diphenylacetylene having fluorescence decay times of 0.95 ns and 8 ps, respectively.
View Article and Find Full Text PDFThe influence of chirality on the elementary processes triggered by excitation of the (S,S)- and (R,S)- diastereoisomers of naproxen-pyrrolidine (NPX-Pyr) dyads has been studied by time-resolved fluorescence in acetonitrile-benzene mixtures. In these systems, the quenching of the (1)NPX*-Pyr singlet excited state occurs through electron transfer and exciplex formation. Fluorescence lifetimes and quantum yields revealed a significant difference (around 20%) between the (S,S)- and (R,S)- diastereomers.
View Article and Find Full Text PDFThe accumulation of β-amyloid (Aβ) peptide in the brain is one of the pathological hallmarks of Alzheimer's disease and is thought to be of primary aetiological significance. In an unbiased genetic screen, we identified puromycin-sensitive aminopeptidase (PSA) as a potent suppressor of Aβ toxicity in a Drosophila model system. We established that coexpression of Drosophila PSA (dPSA) in the flies' brains improved their lifespan, protected against locomotor deficits, and reduced brain Aβ levels by clearing the Aβ plaque-like deposits.
View Article and Find Full Text PDFEndoplasmic reticulum (ER) dysfunction might have an important part to play in a range of neurological disorders, including cerebral ischaemia, sleep apnoea, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, the prion diseases, and familial encephalopathy with neuroserpin inclusion bodies. Protein misfolding in the ER initiates the well studied unfolded protein response in energy-starved neurons during stroke, which is relevant to the toxic effects of reperfusion. The toxic peptide amyloid β induces ER stress in Alzheimer's disease, which leads to activation of similar pathways, whereas the accumulation of polymeric neuroserpin in the neuronal ER triggers a poorly understood ER-overload response.
View Article and Find Full Text PDFPhotodegradation of herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in aqueous solution was investigated by stationary (254 nm) and nanosecond laser (266 nm) flash photolysis techniques. It was shown that in the primary photochemical step both photoionization (which generates a hydrated electron-radical cation pair) and heterolytic cleavage of a C-Cl bond takes place. The major products of substitution of one of the chlorine atoms in the 2-, 4- or 5-position by a hydroxyl group as well as the products of hydroxylation of the benzene ring in 3- and 6-positions were identified by HPLC and LC-MS methods.
View Article and Find Full Text PDFMembers of the serine protease inhibitor (serpin) superfamily are found in all branches of life and play an important role in the regulation of enzymes involved in proteolytic cascades. Mutants of the serpins result in a delay in folding, with unstable intermediates being cleared by endoplasmic reticulum-associated degradation. The remaining protein is either fully folded and secreted or retained as ordered polymers within the endoplasmic reticulum of the cell of synthesis.
View Article and Find Full Text PDFTissue expression microarrays, employed to determine the players and mechanisms leading to prostate cancer development, have consistently shown that myosin VI, a unique actin-based motor, is upregulated in medium-grade human prostate cancers. Thus, to understand the role of myosin VI in prostate cancer development, we have characterized its intracellular localization and function in the prostate cancer cell line LNCaP. Using light and electron microscopy, we identified myosin VI on Rab5-positive early endosomes, as well as on recycling endosomes and the trans-Golgi network.
View Article and Find Full Text PDFThe tafazzin gene encodes a phospholipid-lysophospholipid transacylase involved in cardiolipin metabolism, but it is not known why it forms multiple transcripts as a result of alternative splicing. Here we studied the intracellular localization, enzymatic activity, and metabolic function of four isoforms of human tafazzin and three isoforms of Drosophila tafazzin upon expression in different mammalian and insect systems. When expressed in HeLa cells, all isoforms were localized in mitochondria except for the B-form of Drosophila tafazzin, which was associated with multiple intracellular membranes.
View Article and Find Full Text PDFProteomic analyses of the nucleolus have revealed almost 700 functionally diverse proteins implicated in ribosome biogenesis, nucleolar assembly, and regulation of vital cellular processes. However, this nucleolar inventory has not unveiled a specific consensus motif necessary for nucleolar binding. The ribosomal protein family characterized by their basic nature should exhibit distinct binding sequences that enable interactions with the rRNA precursor molecules facilitating subunit assembly.
View Article and Find Full Text PDFArchaea, Bacteria, and Eukarya have 34 homologous ribosomal protein (RP) families in common. Comparisons of published amino acid sequences prompted us to question whether RPs of the prokaryote Thermus thermophilus contain nuclear localization signals (NLSs), which are recognized by the nuclear import machinery of eukaryotic cells and are thereby translocated into the nucleoplasm ultimately accumulating in the nucleolus. Several RPs of T.
View Article and Find Full Text PDF1H NMR and CIDNP methods were used to demonstrate that triterpene glycoside (glycyrrhizic acid, GA) can substantially change the efficiency and direction of phototransformation of alkaloid lappaconitine (LA) due to both its solubilization in GA micelles and protonation of LA amine nitrogen in water-alcohol solutions. The LA solubilization in the GA micelle suppresses the process of deacylation.
View Article and Find Full Text PDFThe field dependencies of biradical recombination probability in the presence of paramagnetic species with spins S(3) = 1 and S(3) = (1)/(2) have been calculated in the framework of the density matrix formalism. To describe the effect of the "third" spin on the spin evolution in biradical, we have also considered the spin exchange interaction between the added spin and one of the paramagnetic biradical centers. A characteristic feature of the calculated field dependencies is the existence of several extrema with positions and magnitudes depending on the signs and values of the exchange integrals in the system.
View Article and Find Full Text PDF