Chlamydia trachomatis serovars D-K are sexually transmitted intracellular bacterial pathogens that replicate in epithelial cells lining the human reproductive tract. It is clear from knockout mice and T cell depletion studies using Chlamydia muridarum that MHC class II and CD4 T cells are critical for clearing bacteria from the murine genital tract. It is not clear how CD4 T cells interact with infected epithelial cells to mediate bacterial clearance in vivo.
View Article and Find Full Text PDFEpithelial cells lining the murine genital tract act as sentinels for microbial infection, play a major role in the initiation of the early inflammatory response, and can secrete factors that modulate the adaptive immune response when infected with Chlamydia. C. muridarum-infected murine oviduct epithelial cells secrete the inflammatory cytokines IL-6 and GM-CSF in a TLR2-dependent manner.
View Article and Find Full Text PDFDuring natural infections Chlamydia trachomatis urogenital serovars replicate predominantly in the epithelial cells lining the reproductive tract. This tissue tropism poses a unique challenge to host cellar immunity and future vaccine development. In the experimental mouse model, CD4 T cells are necessary and sufficient to clear Chlamydia muridarum genital tract infections.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2007
Animals with immune systems have two types of proteasomes, "standard proteasomes" and "immunoproteasomes" that respectively contain constitutively expressed catalytic subunits or interferon-gamma-inducible catalytic subunits. Interestingly, proteasome assembly is biased against formation of most mixed proteasomes containing combinations of standard subunits and immunosubunits. We previously demonstrated that catalytic subunit propeptide differences contribute to this assembly specificity.
View Article and Find Full Text PDFImmunoproteasomes comprise a specialized subset of proteasomes that is defined by the presence of three catalytic immunosubunits: LMP2, MECL-1 (LMP10), and LMP7. Proteasomes in general serve many cellular functions through protein degradation, whereas the specific function of immunoproteasomes has been thought to be largely, if not exclusively, optimization of MHC class I Ag processing. In this report, we demonstrate that T cells from double knockout mice lacking two of the immunosubunits, MECL-1 and LMP7, hyperproliferate in vitro in response to various polyclonal mitogens.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2004
Immunoproteasomes and standard proteasomes assemble by alternative pathways that bias against the formation of certain "mixed" proteasomes. Differences between beta subunit propeptides contribute to assembly specificity and an assembly chaperone, proteassemblin, may be involved via differential propeptide interactions. We investigated possible mechanisms of biased proteasome assembly and the role of proteassemblin by identifying protein-protein interactions among human 20S proteasome subunits and proteassemblin using a yeast two-hybrid interaction assay.
View Article and Find Full Text PDFVertebrate proteasomes are structurally heterogeneous, consisting of both "constitutive" (or "standard") proteasomes and "immunoproteasomes." Constitutive proteasomes contain three ubiquitously expressed catalytic subunits, Delta (beta 1), Z (beta 2), and X (beta 5), whereas immunoproteasomes contain three interferon-gamma-inducible catalytic subunits, LMP2 (beta 1i), MECL (beta 2i), and LMP7 (beta 5i). We recently have demonstrated that proteasome assembly is biased to promote immunoproteasome homogeneity when both types of catalytic subunits are expressed in the same cell.
View Article and Find Full Text PDF