(F3C)F2SiONMe2 was prepared from LiONMe2 and F3CSiF3. It was characterized by gas IR and multinuclear solution NMR spectroscopy and by mass spectrometry. Its structure was elucidated by single crystal X-ray crystallography and by gas electron diffraction.
View Article and Find Full Text PDFF3SiCH2NMe2 was prepared as a model for the investigation of the nature of the alpha-effect in alpha-aminosilanes, by fluorination of Cl3SiCH2NMe2 with SbF3. Under less mild conditions Si--C bond cleavage was also observed, leading to the double adduct F4Si(Me2NCH2SiF3)2, which was characterised by a crystal structure analysis showing that the central SiF4 unit is connected to Me2NCH2SiF3 via SiN dative bonds and FSi contacts. F3SiCH2NMe2 was characterised by multinuclear NMR spectroscopy (1H, 13C, 15N, 19F and 29Si), gas-phase IR spectroscopy and mass spectrometry.
View Article and Find Full Text PDFThe crystal structures of (H(3)C)(2)O, H(2)SiCl(2) and an adduct of these were determined by low-temperature X-ray crystallography on crystals grown in situ at low temperatures on a diffractometer. The adduct of (H(3)C)(2)O and H(2)SiCl(2) has the composition [(H(3)C)(2)O.H(2)SiCl(2)](2) and contains a four-membered Si(2)O(2) ring, with the Cl atoms pointing to the outside and the Si-H functions pointing to the inner side of the ring.
View Article and Find Full Text PDFThe simple silylhydrazines F(3)SiN(Me)NMe(2) (1), F(2)Si(N(Me)NMe(2))(2) (2), and F(3)SiN(SiMe(3))NMe(2) (3) have been prepared by reaction of SiF(4) with LiN(Me)NMe(2) and LiN(SiMe(3))NMe(2), while F(3)SiN(SnMe(3))NMe(2) (4) was prepared from SiF(4) and (Me(3)Sn)(2)NNMe(2) (5). The compounds were characterized by gas-phase IR and multinuclear NMR spectroscopy ((1)H, (13)C, (14/15)N, (19)F, (29)Si, (119)Sn), as well as by mass spectrometry. The crystal structures of compounds 1-5 were determined by X-ray crystallography.
View Article and Find Full Text PDF