Clostridium difficile has emerged as a major cause of infectious diarrhea in hospitalized patients, with increasing mortality rate and annual healthcare costs exceeding $3 billion. Since C. difficile infections are associated with the use of antibiotics, there is an urgent need to develop treatments that can inactivate the bacterium selectively without affecting commensal microflora.
View Article and Find Full Text PDFProtein A chromatography has been used as the mAb capture step in the majority of FDA submissions. In this study, the performance of protein A chromatography, as indicated by capacity, operational flow rate, and productivity (rate of mAb production per liter of resin) was examined over its full history to gain insights into the reasons for its consistent use. Protein A productivity and capacity have increased 4.
View Article and Find Full Text PDFBacterial lysins are potent antibacterial enzymes with potential applications in the treatment of bacterial infections. Some lysins lose activity in the growth media of target bacteria, and the underlying mechanism remains unclear. Here we use CD11, an autolysin of Clostridium difficile, as a model lysin to demonstrate that the inability of this enzyme to kill C.
View Article and Find Full Text PDFEnergy intensive and chemical routes predominately govern modern dental material fabrication involving complex physicochemical approaches. Current interest in dental material design is shifting towards biomineralization method and green chemistry synthesis to support oral tissue biocompatibility and oropharmacology. This review article describes the context of biophysical approaches based on development in nanoengineering to design advance nanomaterials for clinical dentistry.
View Article and Find Full Text PDFBacteriolytic enzymes often possess a C-terminal binding domain that recognizes specific motifs on the bacterial surface and a catalytic domain that cleaves covalent linkages within the cell wall peptidoglycan. PlyPH, one such lytic enzyme of bacteriophage origin, has been reported to be highly effective against Bacillus anthracis, and can kill up to 99.99% of the viable bacteria.
View Article and Find Full Text PDFEnzyme Microb Technol
September 2014
We report the ability of mycobacteriophage-derived endolysins to inhibit the growth of Mycobacterium smegmatis. We expressed and purified LysB from mycobacteriophage Bxz2 and compared its activity with that of a previously reported LysB from mycobacteriophage Ms6. The esterase activity of Bxz2 LysB with pNP esters was 10-fold higher than that of the previously reported LysB but its lipolytic activity was significantly lower.
View Article and Find Full Text PDFCarbon nanotubes (CNTs) are receiving much attention in medicine, electronics, consumer products, and next-generation nanocomposites because of their unique nanoscale properties. However, little is known about the toxicity and oxidative stress related anomalies of CNTs on complex multicellular behavior. This includes cell chirality, a newly discovered cellular property important for embryonic morphogenesis and demonstrated by directional migration and biased alignment on micropatterned surfaces.
View Article and Find Full Text PDFThe bacillus spore coat confers chemical and biological resistance, thereby protecting the core from harsh environments. The primarily protein-based coat consists of recalcitrant protein crosslinks that endow the coat with such functional protection. Proteases are present in the spore coat, which play a putative role in coat degradation in the environment.
View Article and Find Full Text PDFAppl Biochem Biotechnol
October 2013
A key enzyme for the biosynthesis and bioengineering of heparin, 3-O-sulfotransferase-1 (3-OST-1), was expressed and purified in Gram-positive Bacillus subtilis and Bacillus megaterium. Western blotting, protein sequence analysis, and enzyme activity measurement confirmed the expression. The enzymatic activity of 3-OST-1 expressed in Bacillus species were found to be similar to those found when expressed in Escherichia coli.
View Article and Find Full Text PDFThere continues to be a need for developing efficient and environmentally friendly treatments for Bacillus anthracis, the causative agent of anthrax. One emerging approach for inactivation of vegetative B. anthracis is the use of bacteriophage endolysins or lytic enzymes encoded by bacterial genomes (autolysins) with highly evolved specificity toward bacterium-specific peptidoglycan cell walls.
View Article and Find Full Text PDFCell lytic enzymes represent an alternative to chemical decontamination or use of antibiotics to kill pathogenic bacteria, such as listeria. A number of phage cell lytic enzymes against listeria have been isolated and possess listericidal activity; however, there has been no attempt to incorporate these enzymes onto surfaces. We report three facile routes for the surface incorporation of the listeria bacteriophage endolysin Ply500: covalent attachment onto FDA approved silica nanoparticles (SNPs), incorporation of SNP-Ply500 conjugates into a thin poly(hydroxyethyl methacrylate) film; and affinity binding to edible crosslinked starch nanoparticles via construction of a maltose binding protein fusion.
View Article and Find Full Text PDF