Publications by authors named "Kruk C"

Faecal contamination is a widespread environmental and public health problem on recreational beaches around the world. The implementation of predictive models has been recommended by the World Health Organization as a complement to traditional monitoring to assist decision-makers and reduce health risks. Despite several advances that have been made in the modeling of faecal coliforms, tools and algorithms from machine learning are still scarcely used in the field and their implementation in nowcast systems is delayed.

View Article and Find Full Text PDF

Species of the Microcystis genus are the most common bloom-forming toxic cyanobacteria worldwide. They belong to a clade of unicellular cyanobacteria whose ability to reach high biomasses during blooms is linked to the formation of colonies. Colonial lifestyle provides several advantages under stressing conditions of light intensity, ultraviolet light, toxic substances and grazing.

View Article and Find Full Text PDF

It is widely known that the environmental conditions caused by the construction of reservoirs favor the proliferation of toxic cyanobacteria and the formation of blooms due to the high residence time of the water, low turbidity, temperature regimes, among others. Microcystin-producing cyanobacteria such as those from the Microcystis aeruginosa complex (MAC) are the most frequently found organisms in reservoirs worldwide, being the role of the environment on microcystin production poorly understood. Here, we addressed the community dynamics and potential toxicity of MAC cyanobacteria in a subtropical reservoir (Salto Grande) located in the low Uruguay river.

View Article and Find Full Text PDF

Toxic cyanobacterial blooms are globally increasing with negative effects on aquatic ecosystems, water use and human health. Blooms' main driving forces are eutrophication, dam construction, urban waste, replacement of natural vegetation with croplands and climate change and variability. The relative effects of each driver have not still been properly addressed, particularly in large river basins.

View Article and Find Full Text PDF

Aim: Understanding the variation in community composition and species abundances (i.e., β-diversity) is at the heart of community ecology.

View Article and Find Full Text PDF

A recent paper by Beretta-Blanco and Carrasco-Letelier (2021) claims that agricultural eutrophication is not one of the main causes for cyanobacterial blooms in rivers and artificial reservoirs. By combining rivers of markedly different hydrological characteristics e.g.

View Article and Find Full Text PDF

Addressing the ecological and evolutionary processes underlying biodiversity patterns is essential to identify the mechanisms shaping community structure and function. In bacteria, the formation of new ecologically distinct populations (ecotypes) is proposed as one of the main drivers of diversification. New ecotypes arise when mutations in key functional genes or acquisition of new metabolic pathways by horizontal gene transfer allow the population to exploit new resources, permitting their coexistence with the parental population.

View Article and Find Full Text PDF

Predicting water contamination by statistical models is a useful tool to manage health risk in recreational beaches. Extreme contamination events, i.e.

View Article and Find Full Text PDF

Cyanobacterial toxic blooms are a worldwide problem. The Río de la Plata (RdlP) basin makes up about one fourth of South America areal surface, second only to the Amazonian. Intensive agro-industrial land use and the construction of dams have led to generalized eutrophication of main tributaries and increased the intensity and duration of cyanobacteria blooms.

View Article and Find Full Text PDF

Blooms of the Microcystis aeruginosa complex (MAC) consist of mixtures of toxin-producing and non-toxin-producing populations, but the environmental conditions that determine their relative abundance and shift are not clear. Morphological traits reflect the responses of MAC organisms to environmental changes, thus they could be useful to improve the predictability of the abundance of both toxic and nontoxic populations. In this work, the response of MAC toxic populations to environmental conditions and their relationship with morphology (size of organisms) were investigated in different water bodies (reservoir, river, and estuary) covering wide salinity (0-33) and temperature (10-36 °C) gradients.

View Article and Find Full Text PDF

Microcystis aeruginosa complex (MAC) encompasses noxious colonial bloom forming cyanobacteria. MAC representatives bloom in eutrophic freshwater and brackish ecosystems with stagnant water, were temperature and salinity are the main variables modulating their distribution, biomass and toxicity. Cell abundance and biovolume of MAC colonies define regulatory standards for public health.

View Article and Find Full Text PDF

The Microcystis aeruginosa complex (MAC) clusters many of the most common freshwater and brackish bloom-forming cyanobacteria. In monitoring protocols, biovolume estimation is a common approach to determine MAC colonies biomass and useful for prediction purposes. Biovolume (μm mL) is calculated multiplying organism abundance (orgL) by colonial volume (μmorg).

View Article and Find Full Text PDF

The thermal response of maximum growth rate in morphology-based functional groups (MBFG) of freshwater phytoplankton is analysed. Contrasting an exponential Boltzmann-Arrhenius with a unimodal model, three main features were evaluated: (i) the activation energy of the rise (), (ii) the presence of a break in the thermal response and (iii) the activation energy of the fall (). The whole dataset ( = 563) showed an exponential increase ( ∼ 0.

View Article and Find Full Text PDF

The Microcystis aeruginosa complex (MAC) clusters cosmopolitan and conspicuous harmful bloom-forming cyanobacteria able to produce cyanotoxins. It is hypothesized that low temperatures and brackish salinities are the main barriers to MAC proliferation. Here, patterns at multiple levels of organization irrespective of taxonomic identity (i.

View Article and Find Full Text PDF

Bloom-forming species belonging to Microcystis aeruginosa complex (MAC) are the most commonly reported worldwide. MAC blooms are composed by toxic and non-toxic genotypes and the environmental conditions favouring the dominance of toxic genotypes are still a matter of debate among the scientific community. In this study, we evaluated the distribution of toxic MAC genotypes along a seasonal cycle and over an environmental gradient spanning 800km, from a eutrophic freshwater reservoir in Río Uruguay to marine water in the outer limit of Río de la Plata.

View Article and Find Full Text PDF

The application of trait-based approaches has become a widely applied tool to analyse community assembly processes and dynamics in phytoplankton communities. Its advantages include summarizing information of many species without losing essentials of the main driving processes. Here, we used trait-based approaches to study phytoplankton temporal succession in a subtropical reservoir.

View Article and Find Full Text PDF

In this paper we attempt to explain observed niche differences among species (i.e. differences in their distribution along environmental gradients) by differences in trait values (e.

View Article and Find Full Text PDF

Understanding the mechanisms that maintain biodiversity is a fundamental problem in ecology. Competition is thought to reduce diversity, but hundreds of microbial aquatic primary producers species coexist and compete for a few essential resources (e.g.

View Article and Find Full Text PDF

The cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii are bloom-forming species common in eutrophic freshwaters. These filamentous species share certain physiological traits which imply that they might flourish under similar environmental conditions. We compared the distribution of the two species in a large database (940 samples) covering different climatic regions and the Northern and Southern hemispheres, and carried out laboratory experiments to compare their morphological and physiological responses.

View Article and Find Full Text PDF

The mechanisms that drive species coexistence and community dynamics have long puzzled ecologists. Here, we explain species coexistence, size structure and diversity patterns in a phytoplankton community using a combination of four fundamental factors: organism traits, size-based constraints, hydrology and species competition. Using a 'microscopic' Lotka-Volterra competition (MLVC) model (i.

View Article and Find Full Text PDF

Objective: To describe the implementation and evaluation of an undergraduate course in the first Australian academic emergency medicine unit.

Methods: A descriptive study of a course involving fifth year medical students at the University of Western Australia was undertaken. Teaching included self-directed case problem solving, small group tutorials, practical-skills teaching, clinical attachments and information handouts.

View Article and Find Full Text PDF

New side-chain-modified bleomycins (BLMs) 3a-k have been synthesized by the reaction of demethyl BLM A2 with alpha-bromoacetamides (2a-k). The structures of these BLM analogues have been established by comparison of their NMR spectra with the corresponding spectra of model thiazole derivatives. Mass spectra (FAB) of the modified BLMs are not informative, since the fragmentation patterns exhibit a loss of the modified chain moiety, presumably in the matrix.

View Article and Find Full Text PDF

1H-NMR spectra of bleomycin A2 recorded at 500 MHz in D2O and H2O at 24 degrees C and 3 degrees C were investigated. Resonances of the individual spin systems were identified by using two-dimensional correlation spectroscopy (COSY), two-dimensional spin echo correlated spectroscopy (SECSY) and by the application of two-dimensional Nuclear Overhauser Effect spectroscopy (NOESY). Employment of these techniques allowed the assignment of 113 exchangeable and 59 non-exchangeable protons in the 1H NMR spectrum of bleomycin A2.

View Article and Find Full Text PDF