Publications by authors named "Kronenberger J"

Taxon-specific quantitative PCR (qPCR) assays are commonly used for environmental DNA sampling-based inference of animal presence. These assays require thorough validation to ensure that amplification truly indicates detection of the target taxon, but a thorough validation is difficult when there are potentially many non-target taxa, some of which may have incomplete taxonomies. Here, we use a previously published, quantitative model of cross-amplification risk to describe a framework for assessing qPCR assay specificity when there is missing information and it is not possible to assess assay specificity for each individual non-target confamilial.

View Article and Find Full Text PDF

Environmental DNA (eDNA) sampling is a highly sensitive and cost-effective technique for wildlife monitoring, notably through the use of qPCR assays. However, it can be difficult to ensure assay specificity when many closely related species co-occur. In theory, specificity may be assessed in silico by determining whether assay oligonucleotides have enough base-pair mismatches with nontarget sequences to preclude amplification.

View Article and Find Full Text PDF

Human activities that fragment fish habitat have isolated inland salmonid populations. This isolation is associated with loss of migratory life histories and declines in population density and abundance. Isolated populations exhibiting only resident life histories may be more likely to persist if individuals can increase lifetime reproductive success by maturing at smaller sizes or earlier ages.

View Article and Find Full Text PDF

In the face of rapid anthropogenic environmental change, it is increasingly important to understand how ecological and evolutionary interactions affect the persistence of natural populations. Augmented gene flow has emerged as a potentially effective management strategy to counteract negative consequences of genetic drift and inbreeding depression in small and isolated populations. However, questions remain about the long-term impacts of augmented gene flow and whether changes in individual and population fitness are reflected in ecosystem structure, potentiating eco-evolutionary feedbacks.

View Article and Find Full Text PDF

Human land use is fragmenting habitats worldwide and inhibiting dispersal among previously connected populations of organisms, often leading to inbreeding depression and reduced evolutionary potential in the face of rapid environmental change. To combat this augmentation of isolated populations with immigrants is sometimes used to facilitate demographic and genetic rescue. Augmentation with immigrants that are genetically and adaptively similar to the target population effectively increases population fitness, but if immigrants are very genetically or adaptively divergent, augmentation can lead to outbreeding depression.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic rescue can help improve genetic diversity in endangered populations, but it's not straightforward.
  • Introducing males or females can have different impacts, and it's crucial to understand these effects.
  • Introducing females might create issues with mitonuclear compatibility, potentially harming the fitness of the offspring.
View Article and Find Full Text PDF

Gene flow between phenotypically divergent populations can disrupt local adaptation or, alternatively, may stimulate adaptive evolution by increasing genetic variation. We capitalised on historical Trinidadian guppy transplant experiments to test the phenotypic effects of increased gene flow caused by replicated introductions of adaptively divergent guppies, which were translocated from high- to low-predation environments. We sampled two native populations prior to the onset of gene flow, six historic introduction sites, introduction sources and multiple downstream points in each basin.

View Article and Find Full Text PDF

The hydroxysteroid dehydrogenase HSD1, identified in the proteome of oil bodies from mature Arabidopsis seeds, is encoded by At5g50600 and At5g50700, two gene copies anchored on a duplicated region of chromosome 5. Using a real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) approach, the accumulation of HSD1 mRNA was shown to be specifically and highly induced in oil-accumulating tissues of maturing seeds. HSD1 mRNA disappeared during germination.

View Article and Find Full Text PDF

As part of an ongoing research program dedicated to the understanding of proanthocyanidin (PA) accumulation in Brassica napus seed coat, transgenic rapeseed plants carrying a 2.3-kb fragment of the Arabidopsis thaliana BAN promoter (ProAtBAN) fused to the uidA reporter gene (GUS) were generated. Analysis of these plants revealed that ProAtBAN was activated in B.

View Article and Find Full Text PDF

Sucrose synthase (SUS) is a key enzyme in sucrose metabolism. This enzyme catalyzes the reversible conversion of sucrose and UDP to UDP-glucose and fructose. In the Arabidopsis SUS gene family (six members), SUS2 is strongly and specifically expressed in Arabidopsis seeds during the maturation phase.

View Article and Find Full Text PDF

We investigated the role of glutamine synthetases (cytosolic GS1 and chloroplast GS2) and glutamate synthases (ferredoxin-GOGAT and NADH-GOGAT) in the inorganic nitrogen assimilation and reassimilation into amino acids between bundle sheath cells and mesophyll cells for the remobilization of amino acids during the early phase of grain filling in Zea mays L. The plants responded to a light/dark cycle at the level of nitrate, ammonium and amino acids in the second leaf, upward from the primary ear, which acted as the source organ. The assimilation of ammonium issued from distinct pathways and amino acid synthesis were evaluated from the diurnal rhythms of the transcripts and the encoded enzyme activities of nitrate reductase, nitrite reductase, GS1, GS2, ferredoxin-GOGAT, NADH-GOGAT, NADH-glutamate dehydrogenase and asparagine synthetase.

View Article and Find Full Text PDF

The Arabidopsis thaliana accession Shahdara was identified as a rare naturally occurring mutant that does not liberate seed mucilage on imbibition. The defective locus was found to be allelic to the mum2-1 and mum2-2 mutants. Map-based cloning showed that MUCILAGE-MODIFIED2 (MUM2) encodes the putative beta-D-galactosidase BGAL6.

View Article and Find Full Text PDF

A comprehensive analysis was carried out of the composition of seed coat mucilage from Arabidopsis thaliana using the Columbia-0 accession. Pectinaceous mucilage is released from myxospermous seeds upon imbibition, and in Arabidopsis consists of a water-soluble, outer layer and an adherent, inner layer. Analysis of monosaccharide composition in conjunction with digestion with pectolytic enzymes conclusively demonstrated that the principal pectic domain of both layers was rhamnogalacturonan I, and that in the outer layer this was unbranched.

View Article and Find Full Text PDF

Background: There is much support for using cooperative methods, since important instructional aspects, such as elaboration of new information, can easily be realized by methods like 'jigsaw'. However, the impact of providing students with additional help like a questioning training and potential limitations of the method concerning the (minimum) age of the students have rarely been investigated.

Aims: The study investigated the effects of cooperative methods at elementary school level.

View Article and Find Full Text PDF

Glutamate (Glu) metabolism and amino acid translocation were investigated in the young and old leaves of tobacco (Nicotiana tabacum L. cv Xanthi) using [15N]ammonium and [2-15N]Glu tracers. Regardless of leaf age, [15N]ammonium assimilation occurred via glutamine synthetase (GS; EC 6.

View Article and Find Full Text PDF

The sucrose transporter gene AtSUC5 was studied as part of a programme aimed at identifying and studying the genes involved in seed maturation in Arabidopsis. Expression profiling of AtSUC5 using the technique of real-time quantitative reverse transcriptase polymerase chain reaction (RT-PCR) showed that the gene was specifically and highly induced during seed development between 4 and 9 days after flowering (DAF). Analysis of the activity of the AtSUC5 promoter in planta was consistent with this timing, and suggested that AtSUC5 expression is endosperm specific, spreading from the micropylar to the chalazal pole of the filial tissue.

View Article and Find Full Text PDF

Acetyl-CoA carboxylase (ACCase) catalyses the carboxylation of acetyl-CoA, forming malonyl-CoA, which is used in the plastid for fatty acid synthesis and in the cytosol in various biosynthetic pathways including fatty acid elongation. In Arabidopsis thaliana, ACC1 and ACC2, two genes located in a tandem repeat within a 25-kbp genomic region near the centromere of chromosome 1, encode two multifunctional ACCase isoforms. Both genes, ACC1 and ACC2, appear to be ubiquitously expressed, but little is known about their respective function and importance.

View Article and Find Full Text PDF

The UNUSUAL FLORAL ORGANS (UFO) gene is required for several aspects of floral development in Arabidopsis including specification of organ identity in the second and third whorls and the proper pattern of primordium initiation in the inner three whorls. UFO is expressed in a dynamic pattern during the early phases of flower development. Here we dissect the role of UFO by ubiquitously expressing it in ufo loss-of-function flowers at different developmental stages and for various durations using an ethanol-inducible expression system.

View Article and Find Full Text PDF

The struwwelpeter (swp) mutant in Arabidopsis shows reduced cell numbers in all aerial organs. In certain cases, this defect is partially compensated by an increase in final cell size. Although the mutation does not affect cell cycle duration in the young primordia, it does influence the window of cell proliferation, as cell number is reduced during the very early stages of primordium initiation and a precocious arrest of cell proliferation occurs.

View Article and Find Full Text PDF

The KNAT2 (for KNOTTED-like from Arabidopsis thaliana 2) homeobox gene is expressed in the vegetative apical meristem. It is also active during flower development, suggesting a function in the structuring of flowers. To investigate its role, we used a DEXAMETHASONE (DEX)-inducible system to generate transgenic plants that overexpressed a fusion of KNAT2 with the hormone binding domain of the glucocorticoid receptor.

View Article and Find Full Text PDF

The process of organ positioning has been addressed, using the pin-formed 1 (pin1) mutant as a tool. PIN1 is a transmembrane protein involved in auxin transport in Arabidopsis. Loss of function severely affects organ initiation, and pin1 mutants are characterised by an inflorescence meristem that does not initiate any flowers, resulting in the formation of a naked inflorescence stem.

View Article and Find Full Text PDF

Background: Developing new treatments for glomerulonephritis makes the glomerulus a logical target for gene therapy. Microspheres may lodge in the glomerulus, and replication-deficient recombinant adenoviruses are potent mediators of gene transfer. We postulated that adenoviral-microsphere complexes could result in DNA transfer (transduction) into glomerular cells in vivo.

View Article and Find Full Text PDF

Background: Efficient transfer of DNA into human mesangial cells is an essential first step in the development of gene therapies for mesangial cell-mediated glomerulopathies. In the present studies, we assessed the ability of replication deficient recombinant adenovirus to transfer DNA (transduce) into primary cultures of human mesangial cells.

Methods: Primary cultures of human mesangial cells were transduced with an adenoviral vector (rAv beta-gal) containing a CMVllacZ promoter-reporter expression cassette coding for beta-galactosidase (beta-gal).

View Article and Find Full Text PDF

We report two new recessive mutations in Arabidopsis, mgoun1 and mgoun2 which cause a reduction in the number of leaves and floral organs, larger meristems and fasciation of the inflorescence stem. Although meristem structure is affected in the mutants, we provide evidence that its overall organisation is normal, as shown by the expression patterns of two meristem markers. Microscopical analyses suggest that both mutations affect organ primordia production.

View Article and Find Full Text PDF

We assessed the effect of angiotensin II on fibronectin biosynthesis a nd transcription factor activation in adult human mesangial cells in culture. We found that 10(-5) mol/L angiotensin II tended to increase fibronectin mRNA expression within 1 hour (1.2-fold +/- 0.

View Article and Find Full Text PDF