Publications by authors named "Krone P"

Background: The CDK4/6 inhibitor abemaciclib is an FDA-approved agent and induces T-cell-mediated immunity. Previously, we confirmed the therapeutic potential of abemaciclib on mismatch repair-deficient (dMMR) tumors in mice. Here, we applied a prophylactic administration/dosage setting using two preclinical mouse models of dMMR-driven cancer.

View Article and Find Full Text PDF

Wide-spread cancer-related immunosuppression often curtails immune-mediated antitumoral responses. Immune-checkpoint inhibitors (ICIs) have become a state-of-the-art treatment modality for mismatch repair-deficient (dMMR) tumors. Still, the impact of ICI-treatment on bone marrow perturbations is largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • dMMR tumors respond well to immune checkpoint inhibitors, but resistance can hinder treatment success.
  • The study compared the effects of an α-PD-L1 antibody and the CDK4/6 inhibitor abemaciclib in mouse models, finding that abemaciclib significantly improved survival compared to α-PD-L1.
  • The treatment with abemaciclib led to increased immune cell activity, reduced T cell exhaustion, and higher expression of DNA repair genes, suggesting it may be a suitable option for dMMR patients who can’t use ICIs.
View Article and Find Full Text PDF

Industrial release of mercury into the local Minamata environment with consequent poisoning of local communities through contaminated fish and shellfish consumption is considered the classic case of environmental mercury poisoning. However, the mercury species in the factory effluent has proved controversial, originally suggested as inorganic, and more recently as methylmercury species. We used newly available methods to re-examine the cerebellum of historic Cat 717, which was fed factory effluent mixed with food to confirm the source.

View Article and Find Full Text PDF

Mercury is one of the most toxic elements threatening the biosphere, with levels steadily rising due to both natural and human activities. Selenium is an essential micronutrient, required for normal development and functioning of many organisms. While selenium is known to counteract mercury's toxicity under some conditions, to date information about the mercury-selenium relationship is fragmented and often controversial.

View Article and Find Full Text PDF

Mercury compounds are highly toxic; due to the rising levels of mercury pollution, both human and environmental exposure to mercury are increasing. Occupational exposure to inhaled mercury can be high, causing adverse effects not only in the lungs, but in the olfactory system as well. Olfaction plays a critical role in the survival of fish and other vertebrates, and impaired olfaction can substantially impact human quality of life.

View Article and Find Full Text PDF

Selenium is an essential micronutrient for many organisms, and in vertebrates has a variety of roles associated with protection from reactive oxygen species. Over the past two decades there have been conflicting reports upon human health benefits and detriments arising from consumption of selenium dietary supplements. Thus, early studies report a decrease in the incidence of certain types of cancer, whereas subsequent studies did not observe any anti-cancer effect, and adverse effects such as increased risks for type 2 diabetes have been reported.

View Article and Find Full Text PDF

Background: Endoscopic fundoplication requires accurate evaluation of the gastroesophageal junction (GJ) to determine if hiatal hernia repair is necessary before fundoplication. We compared the endoscopic and laparoscopic evaluations of the GJ.

Methods: A total of 53 patients with gastroesophageal reflux disease underwent a laparoscopic repair of a hiatal defect before endoscopic fundoplication.

View Article and Find Full Text PDF

In recent years larval stage zebrafish have been emerging as a standard vertebrate model in a number of fields, ranging from developmental biology to pharmacology and toxicology. The tyrosinase inhibitor 1-phenyl-2-thiourea (PTU) is used very widely with larval zebrafish to generate essentially transparent organisms through inhibition of melanogenesis, which has enabled many elegant studies in areas ranging from neurological development to cancer research. Here we show that PTU can have dramatic synergistic and antagonistic effects on the chemical toxicology of different mercury compounds.

View Article and Find Full Text PDF

The compounds of mercury can be more toxic than those of any other non-radioactive heavy element. Despite this, environmental mercury pollution and human exposure to mercury are widespread, and are increasing. While the unusual ability of selenium to cancel the toxicity of mercury compounds has been known for nearly five decades, only recently have some aspects of the molecular mechanisms begun to be understood.

View Article and Find Full Text PDF

Maternal transfer of elevated selenium (Se) to offspring is an important route of Se exposure for fish in the natural environment. However, there is a lack of information on the tissue specific spatial distribution and speciation of Se in the early developmental stages of fish, which provide important information about Se toxicokinetics. The effect of maternal transfer of Se was studied by feeding adult zebrafish a Se-elevated or a control diet followed by collection of larvae from both groups.

View Article and Find Full Text PDF

We report on the effect of microstructure and geometrically induced modifications of the magnetic properties of granular CoCrPt:SiO2 films with weakly interacting magnetic grains deposited on pre-structured GaSb nanocone templates fabricated by an ion erosion technique. By tuning the irradiation conditions, nanocone patterns of different cone sizes were prepared (from 28 to 120 nm in diameter and 32 to 330 nm high, respectively). The influence of the intergranular exchange coupling was also investigated by varying the SiO2 content from 8 to 12 at.

View Article and Find Full Text PDF

Human populations experience widespread low level exposure to organometallic methylmercury compounds through consumption of fish and other seafood. At higher levels, methylmercury compounds specifically target nervous systems, and among the many effects of their exposure are visual disturbances, including blindness, which previously were thought to be due to methylmercury-induced damage to the visual cortex. Here, we employ high-resolution X-ray fluorescence imaging using beam sizes of 500 × 500 and 250 × 250 nm(2) to investigate the localization of mercury at unprecedented resolution in sections of zebrafish larvae ( Danio rerio ), a model developing vertebrate.

View Article and Find Full Text PDF

Heat-shock proteins (hsps) have important roles in the development of the eye lens. We previously demonstrated that knockdown of hsp70 gene expression using morpholino antisense technology resulted in an altered lens phenotype in zebrafish embryos. A less severe phenotype was seen with knockdown of heat-shock factor 1 (HSF1), suggesting that, while it likely plays a role in hsp70 regulation during lens formation, other regulatory factors are also involved.

View Article and Find Full Text PDF

Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species.

View Article and Find Full Text PDF

Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 and hsp90, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 and hsp90 genes in Xenopus laevis, which is phylogenetically positioned between zebrafish and mammals, has been addressed.

View Article and Find Full Text PDF

We present a study on the magnetization reversal in Co/Pt multilayer films with an out-of-plane easy axis of magnetization deposited onto substrates with densely distributed perforations with an average period as small as 34 nm. Deposition of magnetic Co/Pt multilayers onto the nanoperforated surface results in an array of magnetic nanodots surrounded by a continuous magnetic film. Following the evolution of the magnetic domain pattern in the system, we suggest that domain walls are pinned on structural inhomogeneities given by the underlying nanoperforated template.

View Article and Find Full Text PDF

An approach for tailoring the magnetic properties by ion irradiation of granular perpendicular CoCrPt:SiO(2) films grown on silica particles with sizes down to 10 nm was investigated. The as-prepared samples reveal an intriguing scaling dependence of the coercive field and remnant magnetization: both parameters are found to decrease with decreasing particle size. However, Co(+) irradiation at a low fluence of 0.

View Article and Find Full Text PDF

Neurotoxic methylmercury compounds are widespread in the environment and human exposure worries many communities worldwide. Despite numerous studies addressing methylmercury toxicity, the detailed mechanisms underlying its transport and accumulation, especially during early developmental stages, remain unclear. Zebrafish larvae are increasingly used as a model system for studies of vertebrate development and toxicology.

View Article and Find Full Text PDF

Using synchrotron x-ray fluorescence mapping, we have examined the uptake and localization of organic mercury in zebrafish larvae. Strikingly, the greatest accumulation of methyl and ethyl mercury compounds was highly localized in the rapidly dividing lens epithelium, with lower levels going to brain, optic nerve, and various other organs. The data suggest that the reported impairment of visual processes by mercury may arise not only from previously reported neurological effects, but also from direct effects on the ocular tissue.

View Article and Find Full Text PDF

Hsp90 chaperone complexes function in assembly, folding, and activation of numerous substrates. The 2 vertebrate homologues encoded by the genes hsp90a and hsp90b are differentially expressed in embryonic and adult tissues and during stress; however, it is not known whether they possess identical functional activities in chaperone complexes. This question was addressed by examining potential differences between the Hsp90 isoforms with respect to both cochaperone and substrate interactions.

View Article and Find Full Text PDF

Cadmium has been recognized for some time as a potent environmental pollutant with the capability of disrupting olfactory-mediated behaviors. Failing to respond to chemical cues in the environment could adversely affect foraging, reproduction and predator avoidance. Recognizing this impaired perception as a serious ecological problem has been undermined by the fact that the damage is often reversible; short depuration periods of 5 d may allow for the re-establishment of responses to chemical cues.

View Article and Find Full Text PDF

DNA methylation reprogramming, the erasure of DNA methylation patterns shortly after fertilization and their reestablishment during subsequent early development, is essential for proper mammalian embryogenesis. In contrast, the importance of this process in the development of non-mammalian vertebrates such as fish is less clear. Indeed, whether or not any widespread changes in DNA methylation occur at all during cleavage and blastula stages of fish in a fashion similar to that shown in mammals has remained controversial.

View Article and Find Full Text PDF