Alcohol use disorders (AUDs) and anxiety disorders (ADs) are often seen concurrently, but their underlying cellular basis is unclear. For unclear reasons, the lateral habenula (LHb), a key brain region involved in the pathophysiology of ADs, becomes hyperactive after ethanol withdrawal. M-type K channels (M-channels), important regulators of neuronal activity, are abundant in the LHb, yet little is known about their role in AUDs and associated ADs.
View Article and Find Full Text PDFRecreational drug use leads to compulsive substance abuse in some individuals. Studies on animal models of drug addiction indicate that persistent long-term potentiation (LTP) of excitatory synaptic transmission onto ventral tegmental area (VTA) dopamine (DA) neurons is a critical component of sustained drug seeking. However, little is known about the mechanism regulating such long-lasting changes in synaptic strength.
View Article and Find Full Text PDFNeuropharmacology
February 2017
Ethanol's aversive property may limit it's use, but the underlying mechanisms are no well-understood. Emerging evidence suggests a critical role for the lateral habenula (LHb) in the aversive response to various drugs, including ethanol. We previously showed that ethanol enhances glutamatergic transmission and stimulates LHb neurons.
View Article and Find Full Text PDFThere is much interest in brain regions that drive nicotine intake in smokers. Interestingly, both the rewarding and aversive effects of nicotine are probably critical for sustaining nicotine addiction. The medial and lateral habenular (LHb) nuclei play important roles in processing aversion, and recent work has focused on the critical involvement of the LHb in encoding and responding to aversive stimuli.
View Article and Find Full Text PDFAdolescents are especially prone to drug addiction, but the underlying biological basis of their increased vulnerability remains unknown. We reveal that translational control by phosphorylation of the translation initiation factor eIF2α (p-eIF2α) accounts for adolescent hypersensitivity to cocaine. In adolescent (but not adult) mice, a low dose of cocaine reduced p-eIF2α in the ventral tegmental area (VTA), potentiated synaptic inputs to VTA dopaminergic neurons, and induced drug-reinforced behavior.
View Article and Find Full Text PDFAdolescents are particularly vulnerable to nicotine, the principal addictive component driving tobacco smoking. In a companion study, we found that reduced activity of the translation initiation factor eIF2α underlies the hypersensitivity of adolescent mice to the effects of cocaine. Here we report that nicotine potentiates excitatory synaptic transmission in ventral tegmental area dopaminergic neurons more readily in adolescent mice compared to adults.
View Article and Find Full Text PDFCan J Neurol Sci
March 2016
This review centers on the discoveries made during more than six decades of neuroscience research on the role of gamma-amino-butyric acid (GABA) as neurotransmitter. In doing so, special emphasis is directed to the significant involvement of Canadian scientists in these advances. Starting with the early studies that established GABA as an inhibitory neurotransmitter at central synapses, we summarize the results pointing at the GABA receptor as a drug target as well as more recent evidence showing that GABAA receptor signaling plays a surprisingly active role in neuronal network synchronization, both during development and in the adult brain.
View Article and Find Full Text PDFThere has been increasing interest in the lateral habenula (LHb) given its potent regulatory role in many aversion-related behaviors. Interestingly, ethanol can be rewarding as well as aversive; we therefore investigated whether ethanol exposure alters pacemaker firing or glutamate receptor signaling in LHb neurons in vitro and also whether LHb activity in vivo might contribute to the acquisition of conditioned place aversion to ethanol. Surprisingly, in epithalamic slices, low doses of ethanol (1.
View Article and Find Full Text PDFSalsolinol, a tetrahydroisoquinoline present in the human and rat brains, is the condensation product of dopamine and acetaldehyde, the first metabolite of ethanol. Previous evidence obtained in vivo links salsolinol with the mesolimbic dopaminergic (DA) system: salsolinol is self-administered into the posterior of the ventral tegmental area (pVTA) of rats; intra-VTA administration of salsolinol induces a strong conditional place preference and increases dopamine release in the nucleus accumbens (NAc). However, the underlying neuronal mechanisms are unclear.
View Article and Find Full Text PDFA major goal of biomedical research is the identification of molecular and cellular mechanisms that underlie memory storage. Here we report a previously unknown signaling pathway that is necessary for the conversion from short- to long-term memory. The mammalian target of rapamycin (mTOR) complex 2 (mTORC2), which contains the regulatory protein Rictor (rapamycin-insensitive companion of mTOR), was discovered only recently and little is known about its function.
View Article and Find Full Text PDFIt is known that the posterior ventral tegmental area (p-VTA) differs from the anterior VTA (a-VTA) in that rats learn to self-administer ethanol into the p-VTA, but not into the a-VTA. Because activation of VTA dopaminergic neurons by ethanol is a cellular mechanism underlying the reinforcement of ethanol consumption, we hypothesized that ethanol may exert different effects on dopaminergic neurons in the p-VTA and a-VTA. In patch-clamp recordings in midbrain slices from young rats (postnatal days 22-32), we detected no significant difference in electrophysiological properties between p-VTA and a-VTA dopaminergic neurons.
View Article and Find Full Text PDFPrevious studies in vivo have shown that salsolinol, the condensation product of acetaldehyde and dopamine, has properties that may contribute to alcohol abuse. Although opioid receptors, especially the μ-opioid receptors (MORs), may be involved, the cellular mechanisms mediating the effects of salsolinol have not been fully explored. In the current study, we used whole-cell patch-clamp recordings to examine the effects of salsolinol on dopamine neurons of the ventral tegmental area (VTA) in acute brain slices from Sprague-Dawley rats.
View Article and Find Full Text PDFThe double-stranded RNA-activated protein kinase (PKR) was originally identified as a sensor of virus infection, but its function in the brain remains unknown. Here, we report that the lack of PKR enhances learning and memory in several behavioral tasks while increasing network excitability. In addition, loss of PKR increases the late phase of long-lasting synaptic potentiation (L-LTP) in hippocampal slices.
View Article and Find Full Text PDFBackground: There is much evidence that the sedative component of anesthesia is mediated by gamma-aminobutyric acid type A (GABA(A)) receptors on hypothalamic neurons responsible for arousal, notably in the tuberomammillary nucleus. These GABA(A) receptors are targeted by gamma-aminobutyric acid-mediated (GABAergic) neurons in the ventrolateral preoptic area (VLPO): When these neurons become active, they inhibit the arousal-producing nuclei and induce sleep. According to recent studies, propofol induces sedation by enhancing VLPO-induced synaptic inhibition, making the target cells more responsive to GABA(A).
View Article and Find Full Text PDFThis article reviews especially the early history of glutamate and GABA as neurotransmitters in vertebrates. The proposal that some amino acids could mediate synaptic transmission in the CNS initially met with much resistance. Both GABA and its parent glutamate are abundant in the brain; but, unlike glutamate, GABA had no obvious metabolic function.
View Article and Find Full Text PDFNeuropsychopharmacology
January 2009
The cellular mechanisms underlying alcohol addiction are poorly understood. In several brain areas, ethanol depresses glutamatergic excitatory transmission, but how it affects excitatory synapses on dopamine neurons of the ventral tegmental area (VTA), a crucial site for the development of drug addiction, is not known. We report here that in midbrain slices from rats, clinically relevant concentrations of ethanol (10-80 mM) increase the amplitude of evoked EPSCs and reduce their paired-pulse ratio in dopamine neurons in the VTA.
View Article and Find Full Text PDFOrganized brain activity requires the coordinated firing of vast numbers of nerve cells. To maintain this, all these cells must be adequately polarized, their axons capable of conducting action potentials and releasing transmitters at an even greater numbers of synapses. Hence the often dire consequences of any interruption in the normal supply of O(2) and glucose.
View Article and Find Full Text PDFBackground: Although ethanol addiction is believed to be mediated by the mesolimbic dopamine system, originating from the ventral tegmental area (VTA), how acute ethanol increases the activity of VTA dopaminergic (DA) neurons remains unclear.
Method: Patch-clamp recordings of spontaneous firings of DA and GABAergic neurons in the VTA in acute midbrain slices from rats.
Results: Ethanol (20-80 mM) excites DA neurons, and more potently depresses firing of local GABAergic neurons.
The late phase of long-term potentiation (LTP) and memory (LTM) requires new gene expression, but the molecular mechanisms that underlie these processes are not fully understood. Phosphorylation of eIF2alpha inhibits general translation but selectively stimulates translation of ATF4, a repressor of CREB-mediated late-LTP (L-LTP) and LTM. We used a pharmacogenetic bidirectional approach to examine the role of eIF2alpha phosphorylation in synaptic plasticity and behavioral learning.
View Article and Find Full Text PDFMesencephalic astrocyte-derived neurotrophic factor (MANF) - one of a new class of astrocyte-derived human proteins--selectively promotes the survival of dopamine neurons of the ventral midbrain. Using the whole-cell clamp technique, we looked for acute effects of MANF on gamma-aminobutyric acid type A (GABAA) receptor-mediated inhibitory postsynaptic currents (IPSCs) in dopamine neurons of the substantia nigra pars compacta of 6 to 15-day-old rats. In slices, MANF increased the amplitude of evoked IPSCs and decreased the paired pulse ratio.
View Article and Find Full Text PDFIn a remarkable career, straddling five decades, John Phillis pursued with fierce determination and exceptional energy the main goal of his scientific life, to throw light on the chemical agents that control brain function. Starting in Australia, he settled in North America, first in Canada, then in the USA, where his long tenure at Wayne State brought his career to its culmination.
View Article and Find Full Text PDFPeripherin is a type III intermediate filament protein normally undetectable in most brain neurons. Here, we report a similar pattern of peripherin expression in the brains of both mice treated with systemic injections of kainic acid (KA) and in peripherin transgenic mice (Per mice) over-expressing the normal peripherin gene under its own promoter. Double-immunofluorescence labeling revealed a partial co-localization of peripherin with the microtubule-associated protein MAP2, but not with neurofilament proteins.
View Article and Find Full Text PDFGABA-mediated postsynaptic currents (IPSCs) were recorded from dopaminergic (DA) neurons of the ventral tegmental area (VTA) of rats, in acute brain slices, and from enzymatically or mechanically dissociated neurons. In young rats (3-10 d of age), where GABA is excitatory, glycine (1-3 microm) and taurine (10-30 microm) increased the amplitude of evoked IPSCs (eIPSCs) and the frequency of spontaneous IPSCs (sIPSCs) but had minimal postsynaptic effects. Strychnine (1 microm) blocked the action of glycine; when applied alone, it reduced the amplitude of eIPSCs and the frequency of sIPSCs, indicating a tonic facilitation of GABAergic excitation by some endogenous glycine agonist(s).
View Article and Find Full Text PDF