Publications by authors named "Krizmancic D"

In this work, we apply for the first time ambient pressure operando soft X-ray absorption spectroscopy (XAS) to investigate the location, structural properties, and reactivity of the defective sites present in the prototypical metal-organic framework HKUST-1. We obtained direct evidence that Cu defective sites form upon temperature treatment of the powdered form of HKUST-1 at 160 °C and that they are largely distributed on the material surface. Further, a thorough structural characterization of the Cu/Cu dimeric complexes arising from the temperature-induced dehydration/decarboxylation of the pristine Cu/Cu paddlewheel units is reported.

View Article and Find Full Text PDF

Here, we report on a novel narrowband High Harmonic Generation (HHG) light source designed for ultrafast photoelectron spectroscopy (PES) on solids. Notably, at 16.9 eV photon energy, the harmonics bandwidth equals 19 meV.

View Article and Find Full Text PDF

We use time-resolved X-ray photoelectron spectroscopy to probe the electronic and magnetization dynamics in FeRh films after ultrafast laser excitations. We present experimental and theoretical results which investigate the electronic structure of FeRh during the first-order phase transition, identifying a clear signature of the magnetic phase. We find that a spin polarized feature at the Fermi edge is a fingerprint of the magnetic status of the system that is independent of the long-range ferromagnetic alignment of the magnetic domains.

View Article and Find Full Text PDF

We present a new experimental setup for performing X-ray Absorption Spectroscopy (XAS) in the soft X-ray range at ambient pressure. The ambient pressure XAS setup is fully compatible with the ultra high vacuum environment of a synchrotron radiation spectroscopy beamline end station by means of ultrathin SiN membranes acting as windows for the X-ray beam and seal of the atmospheric sample environment. The XAS detection is performed in total electron yield (TEY) mode by probing the drain current from the sample with a picoammeter.

View Article and Find Full Text PDF

The SOLEIL synchrotron radiation source is regularly operated in special filling modes dedicated to pump-probe experiments. Among others, the low-α mode operation is characterized by shorter pulse duration and represents the natural bridge between 50 ps synchrotron pulses and femtosecond experiments. Here, the capabilities in low-α mode of the experimental set-ups developed at the TEMPO beamline to perform pump-probe experiments with soft X-rays based on photoelectron or photon detection are presented.

View Article and Find Full Text PDF

Complete photoemission experiments, enabling measurement of the full quantum set of the photoelectron final state, are in high demand for studying materials and nanostructures whose properties are determined by strong electron and spin correlations. Here the implementation of the new spin polarimeter VESPA (Very Efficient Spin Polarization Analysis) at the APE-NFFA beamline at Elettra is reported, which is based on the exchange coupling between the photoelectron spin and a ferromagnetic surface in a reflectometry setup. The system was designed to be integrated with a dedicated Scienta-Omicron DA30 electron energy analyzer allowing for two simultaneous reflectometry measurements, along perpendicular axes, that, after magnetization switching of the two targets, allow the three-dimensional vectorial reconstruction of the spin polarization to be performed while operating the DA30 in high-resolution mode.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on anatase TiO(001)-oriented thin films grown on LaAlO(001) using pulsed laser deposition methods.
  • In situ and ex situ techniques were employed to investigate the origin of localized Ti states and their connection to both surface and subsurface structural and electronic properties.
  • The findings reveal that increasing oxygen pressure affects the presence of Ti and the strength of localized in-gap states, but only within a specific range of deposition pressure; outside that range, both decrease.
View Article and Find Full Text PDF

ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure the full SP vector. The system consists of two interconnected UHV vessels: one for surface science sample cleaning treatments, e-beam deposition of ultrathin films, and low energy electron diffraction/AES characterization.

View Article and Find Full Text PDF
Article Synopsis
  • Spin-based electronics using topological insulators (TIs) are promising due to their long spin coherence which enhances fault-tolerant information storage.
  • Magnetically doped TIs show ferromagnetism only up to 13 K, limiting their practical applications.
  • This study demonstrates that applying a Fe overlayer can induce long-range ferromagnetism at room temperature in Bi(2-x)Mn(x)Te(3), paving the way for new advancements in spintronic devices.
View Article and Find Full Text PDF

Synchrotron radiation time structure is becoming a common tool for studying dynamic properties of materials. The main limitation is often the wide time domain the user would like to access with pump-probe experiments. In order to perform photoelectron spectroscopy experiments over time scales from milliseconds to picoseconds it is mandatory to measure the time at which each measured photoelectron was created.

View Article and Find Full Text PDF

We report the main characteristics of the advanced photoelectric effect experiments beamline, operational at Elettra storage ring, featuring a fully independent double branch scheme obtained by the use of chicane undulators and able to keep polarization control in both linear and circular mode. The paper describes the novel technical solutions adopted, namely, (a) the design of a quasiperiodic undulator resulting in optimized suppression of higher harmonics over a large photon energy range (10-100 eV), (b) the thermal stability of optics under high heat load via cryocoolers, and (c) the end station interconnected setup allowing full access to off-beam and on-beam facilities and, at the same time, the integration of users' specialized sample growth chambers or modules.

View Article and Find Full Text PDF

The discontinuity in the lattice periodic potential at surfaces often leads to the creation of new electronic surface states. We developed a photoemission based Fermi surface tomography whose surface sensitivity allowed us to quantify the charge redistribution on the Be(0001) surface. The volume enclosed by the bulklike Fermi surface is significantly reduced at the surface, consistent with the charge transfer to the two surface states as estimated from the area within their two-dimensional Fermi contours.

View Article and Find Full Text PDF