Publications by authors named "Krivokorytov M"

Targeting micrometer sized metal droplets with near-infrared sub-picosecond laser pulses generates intense stress-confined acoustic waves within the droplet. Spherical focusing amplifies their pressures. The rarefaction wave nucleates cavitation at the center of the droplet, which explosively expands with a repeatable fragmentation scenario resulting into high-speed jetting.

View Article and Find Full Text PDF

The deformation and fragmentation of liquid metal microdroplets by intense subpicosecond Ti:sapphire laser pulses is experimentally studied with stroboscopic shadow photography. The experiments are performed at a peak intensity of 10^{14}W/cm^{2} at the target's surface, which produces shock waves with pressures in the Mbar range. As a result of such a strong impact, the droplet is transformed into a complex-shaped hollow structure that undergoes asymmetrical expansion and eventually fragments.

View Article and Find Full Text PDF

We present the results of the low-melting liquid metal droplets generation based on excited Rayleigh jet breakup. We discuss on the operation of the industrial and in-house designed and manufactured dispensing devices for the droplets generation. Droplet diameter can be varied in the range of 30-90 μm.

View Article and Find Full Text PDF