Background: The aim of this study was to evaluate the most effective combination of autoregressive integrated moving average (ARIMA), a time series model, and association rule mining (ARM) techniques to identify meaningful prognostic factors and predict the number of cases for efficient COVID-19 crisis management.
Methods: The 3685 COVID-19 patients admitted at Thailand's first university field hospital following the four waves of infections from March 2020 to August 2021 were analyzed using the autoregressive integrated moving average (ARIMA), its derivative to exogenous variables (ARIMAX), and association rule mining (ARM).
Results: The ARIMA (2, 2, 2) model with an optimized parameter set predicted the number of the COVID-19 cases admitted at the hospital with acceptable error scores (R = 0.
This study aims to analyze the patient characteristics and factors related to clinical outcomes in the crisis management of the COVID-19 pandemic in a field hospital. We conducted retrospective analysis of patient clinical data from March 2020 to August 2021 at the first university-based field hospital in Thailand. Multivariable logistic regression models were used to evaluate the factors associated with the field hospital discharge destination.
View Article and Find Full Text PDF