Publications by authors named "Krittika Dotania"

Nesfatin-1 is a crucial regulator of energy homeostasis in mammals and fishes, however, its metabolic role remains completely unexplored in amphibians, reptiles, and birds. Therefore, present study elucidates role of nesfatin-1 in glucose homeostasis in wall lizard wherein fasting stimulated hepatic nucb2/nesfatin-1, glycogen phosphorylase (glyp), phosphoenolpyruvate carboxykinase (pepck), and fructose 1,6-bisphosphatase (fbp), while feeding upregulated pancreatic nucb2/nesfatin-1 and insulin, suggesting towards tissue-specific dual role of nesfatin-1 in glucoregulation. The glycogenolytic/gluconeogenic role of nesfatin-1 was further confirmed by an increase in media glucose levels along with heightened hepatic pepck and fbp expression and concomitant decline in liver glycogen content in nesfatin-1-treated liver of wall lizard.

View Article and Find Full Text PDF

Nesfatin-1 has recently emerged as a modulator of ovarian functions in mammals. Studies in non-mammalian vertebrates, though limited and majorly restricted to fishes, have evidenced a role of this peptide in the regulation of ovarian steroidogenesis and oocyte maturation. Interestingly, nesfatin-1 remains completely unexplored in reptiles.

View Article and Find Full Text PDF

Nesfatin-1 is a pleiotropic hormone implicated in various physiological functions including reproduction. Studies though limited, have established an important role of the peptide in regulation of testicular functions in mammals and fishes. However, role of nesfatin-1 in regulation of spermatogenesis and testicular steroidogenesis remains completely unexplored in reptiles.

View Article and Find Full Text PDF

Nesfatin-1 was discovered as an anorexigenic peptide derived from proteolytic cleavage of the prepropeptide, nucleobindin 2 (NUCB2). It is widely expressed in central as well as peripheral tissues and is known to have pleiotropic effects such as regulation of feeding, reproduction, cardiovascular functions and maintenance of glucose homeostasis. In order to execute its multifaceted role, nesfatin-1 employs diverse signaling pathways though its receptor has not been identified till date.

View Article and Find Full Text PDF