This study investigates the potential of fused deposition modeling (FDM) three-dimensional (3D) printing techniques for manufacturing catalytic static mixers during biodiesel synthesis. The printed catalytic mixing elements comprises acrylonitrile butadiene styrene (ABS) plastic with 15 wt% calcium oxide (CaO) as a solid catalyst. When the reactants flowed through the CaO/ABS mixing device, the blending and acceleration processes were both significantly impacted.
View Article and Find Full Text PDFThis study aimed to investigate heterogeneous catalytic filaments of calcium oxide (CaO) for fused deposition modeling three-dimensional (3D) printers. The CaO catalysts were blended with acrylonitrile butadiene styrene (ABS) plastic to form catalytic filaments. A single-screw filament extruder was used to prepare the filaments, following which their mechanical properties, thermal properties, morphology, catalytic characteristics in biodiesel production, and reusability were evaluated.
View Article and Find Full Text PDFThis research aimed to evaluate the performance and emissions of direct injection diesel engines using blends of diesel-biodiesel-esterified pyrolysis bio-oil (D-B-EPB). The pyrolysis process was employed to produce pyrolysis bio-oil (PBO) from solid biomass obtained from fresh palm fruits. Furthermore, a simple and effective esterification process was used to upgrade the PBO.
View Article and Find Full Text PDFSludge palm oil (SPO) with high free fatty acid (FFA) content was processed using a continuous and double-step esterification production process in a rotor-stator-type hydrodynamic cavitation reactor. Three-dimensional printed rotor was made of plastic filament and acted as a major element in minimizing the FFA content in SPO. To evaluate the reduced level of FFAs using both methods, five independent factors were varied: methanol content, sulphuric acid content (HSO), hole diameter, hole depth, and rotor speed.
View Article and Find Full Text PDF