Publications by authors named "Kritika Srinivasan"

The coronavirus disease of 2019 (COVID-19) has caused significant morbidity and mortality among infected individuals across the world. High transmissibility rate of the causative virus - Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) - has led to immense strain and bottlenecking of the health care system. While noteworthy advances in vaccine development have been made amid the current global pandemic, most therapeutic agents are repurposed from use in other viral infections and are being evaluated for efficacy in COVID-19.

View Article and Find Full Text PDF

SARS-CoV-2 is the virus that causes coronavirus disease (COVID-19) which has reached pandemic levels resulting in significant morbidity and mortality affecting every inhabited continent. The large number of patients requiring intensive care threatens to overwhelm healthcare systems globally. Likewise, there is a compelling need for a COVID-19 disease severity test to prioritize care and resources for patients at elevated risk of mortality.

View Article and Find Full Text PDF

SARS-CoV-2 is the virus that causes coronavirus disease (COVID-19) which has reached pandemic levels resulting in significant morbidity and mortality affecting every inhabited continent. The large number of patients requiring intensive care threatens to overwhelm healthcare systems globally. Likewise, there is a compelling need for a COVID-19 disease severity test to prioritize care and resources for patients at elevated risk of mortality.

View Article and Find Full Text PDF

Osteopenia and osteoporosis affect over 40 million US adults 50 years and older. Both diseases are strongly influenced by estrogen and nutritional-mineral deficiencies. This study investigates the efficacy of orally delivered synthetic-bone-mineral (SBM), a newly developed calcium phosphate based biomaterial, on reversing bone loss induced by these two critical deficiencies.

View Article and Find Full Text PDF

Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM.

View Article and Find Full Text PDF