Publications by authors named "Krithika Ravi"

Microbial degradation of lignin and its related aromatic compounds has great potential for the sustainable production of chemicals and bioremediation of contaminated soils. We previously isolated sp. strain 9.

View Article and Find Full Text PDF

Hardwood lignin is made of up to 75% syringyl-units and the bioconversion of syringate and syringaldehyde is therefore of considerable interest for biological valorization of lignin. In the current study, we have isolated a syringate-consuming bacterium identified as Microbacterium sp. RG1 and characterized its growth on several lignin model compounds.

View Article and Find Full Text PDF

Lignin is a heterogeneous aromatic biopolymer and a major constituent of lignocellulosic biomass, such as wood and agricultural residues. Despite the high amount of aromatic carbon present, the severe recalcitrance of the lignin macromolecule makes it difficult to convert into value-added products. In nature, lignin and lignin-derived aromatic compounds are catabolized by a consortia of microbes specialized at breaking down the natural lignin and its constituents.

View Article and Find Full Text PDF

Background: Lignin is a potential feedstock for microbial conversion into various chemicals. However, the microbial degradation rate of native or technical lignin is low, and chemical depolymerization is needed to obtain reasonable conversion rates. In the current study, nine bacterial strains belonging to the and genera were evaluated for their ability to grow on alkaline-treated softwood lignin as a sole carbon source.

View Article and Find Full Text PDF

A diversity of softwood lignin depolymerization processes yield guaiacol as the main low molecular weight product. This key aromatic compound can be utilized as a carbon source by several microbial species, most of which are Gram positive bacteria. Microbial degradation of guaiacol is known to proceed initially via demethylation to catechol, and this reaction is catalyzed by cytochrome P450 monooxygenases.

View Article and Find Full Text PDF

Background: Lignin is a potential feedstock for microbial conversion into various chemicals. However, the degradation rate of native or technical lignin is low, and depolymerization is needed to obtain reasonable conversion rates. In the current study, base-catalyzed depolymerization-using NaOH (5 wt%)-of softwood Kraft lignin was conducted in a continuous-flow reactor system at temperatures in the range 190-240 °C and residence times of 1 or 2 min.

View Article and Find Full Text PDF
Article Synopsis
  • Nine bacterial strains were isolated from Baltic Sea sediments using ferulic acid, guaiacol, and lignin-rich softwood as substrates, with three identified as Pseudomonas species.
  • The fastest-growing isolate, identified as Pseudomonas deceptionensis, showed ability to thrive on four out of six lignin model compounds tested, including ferulate and benzoate.
  • Notably, various intermediate compounds were excreted during growth, such as vanillyl alcohol while growing on vanillin, indicating active catabolic processing of the substrates.
View Article and Find Full Text PDF

Starting from mature vegetable compost, four bacterial strains were selected using a lignin-rich medium. 16S ribosomal RNA identification of the isolates showed high score similarity with Pseudomonas spp. for three out of four isolates.

View Article and Find Full Text PDF

Lignin is a major component of lignocellulosic biomass and as such, it is processed in enormous amounts in the pulp and paper industry worldwide. In such industry it mainly serves the purpose of a fuel to provide process steam and electricity, and to a minor extent to provide low grade heat for external purposes. Also from other biorefinery concepts, including 2nd generation ethanol, increasing amounts of lignin will be generated.

View Article and Find Full Text PDF